ABSTRACT

Current practice for earthquake-resistant shallow foundation design does not allow the foundation to fail in bearing, and does not consider the interaction of non-linear responses of the soil, foundation, and superstructure. Design tools exist that allow this interaction to be considered, and with the use of these tools, an alternative design approach that allows shallow foundations to yield during an earthquake becomes available. This paper uses examples to demonstrate the benefits of this alternative design approach. The approach enables the performance of the foundation to be balanced against that of the superstructure. Foundation and superstructure actions may be reduced significantly, whilst incurring only modest permanent foundation displacements. Broad suggestions of the type of criteria that might be required for the yielding foundation design approach are made. It is concluded that it may be preferable to develop criteria that describe performance aspects and system responses that should be considered, rather than prescribe firm quantitative criteria.