ABSTRACT

This section aims at numerically investigating the characteristics and nonlinear dynamics of a TMAFM cantilever-sample system driven by the harmonic excitation. The general properties of the cantilever and interaction properties with the respective sample are referred to [9], are listed in Table 1. The 4th order Runge-Kutta method is used to integrate the set of Equation (23). A small integration step ( 200/2π ) has to be chosen to ensure a stable solution and to avoid the numerical divergence at the points where derivatives of FLJ and Fs are discontinuous. The effects of system parameters on the dynamic behavior of the cantilever vibrating system are investigated by using the bifurcation diagram, Poincaré maps, largest Lyapunov exponent, phase portraits, time histories and amplitude spectrum.