Nowadays people share their physical spaces with a great diversity of heterogeneous devices, so-called “things”, most of which have processing, sensing, and communications capabilities; therefore, they are capable of providing Internet connectivity to couple together the real world with

cyberspace (e.g., by linking their personal devices to similar objects and services around them). Their communication features allow devices with small pieces of code to react as their environment changes. Consequently, “things” become smarter by providing learning and self-adapting capabilities, which are the basis of the Internet of Things and Services (IoTaS). The wide variety of IoTaS-enabled devices support not only simple services for people (via distributed tasks), but also make it possible to use “things’ services” to develop more complex environments (e.g., digital hospitals), which resembles the way Wireless Sensor Networks (WSNs) are being used in e-Health applications(Alemdar and Ersoy 2010).