ABSTRACT

Geographic information systems (GIS) technology increases the quality of information produced by environmental hazards and epidemiologic investigations by adding the dimension of context (Tim, 1995). GIS achieves its highest, best use in the information integration role, providing the infrastructure for combining the disparate types of information needed in environmental/ecologic studies (Nyerges et al., 1997). A wider range of complex disease-environment relationships can be unlocked by combining spatial analytic methods with GIS. The hope that this combination will help us realize a future free of human-induced cancer, leukemia and genetic mutation motivates many investigators. Fortunately, many of the causal and promotive variables involved in carcinogenesis are spatially distributed, and can be analyzed with spatial statistics.