ABSTRACT

Recent advances in nanoscience and nanotechnology have given rise to a novel class of fluids termed nanofluids. Such fluids are suspensions of solid particles with sizes typically of 1-100 nm in a base fluid [1]. (See Figure 9.1 for a schematic representation of a nanofluid system.) Common base fluids include water and organic liquids. Nanoparticles are made of chemically stable metals, metal oxides, or carbon in various forms. The size of the nanoparticles imparts some unique characteristics to these fluids, including

CONTENTS

9.1 Introduction ................................................................................................ 265 9.2 Theoretical Studies of Nanofluid Transport Properties ....................... 268

9.2.1 Surface Properties in Colloids ...................................................... 268 9.2.2 Theoretical Models ........................................................................ 271

9.3 Transport Behavior of Nanocolloidal Suspension ................................ 273 9.3.1 Particle Movement in Flow of Nanoparticle Suspension ......... 274

9.4 Particle Transport in Nanocolloidal Suspension ................................... 276 9.4.1 Particle Transport Model .............................................................. 276 9.4.2 Particle Agglomeration and Break-Up Model ........................... 279

9.4.2.1 Determination of the Agglomeration Parameter .......285 9.5 Different Modeling Strategies Used to Capture the Behavior of

Nanocolloidal Suspension ....................................................................... 290 9.5.1 Molecular Dynamics Simulation (MDS) .................................... 291 9.5.2 Monte Carlo (MC) Simulation ...................................................... 292 9.5.3 Brownian Dynamics (BD) Simulation ........................................ 293

9.6 Scope of Future Research.......................................................................... 294 9.7 Conclusions ................................................................................................. 295 References ............................................................................................................. 296

greatly enhanced heat and mass transfer [2-12], wetting and spreading [13], and antibacterial activities [14].