ABSTRACT

Mechanics ............................................................................................................... 391 14.3 Computational Approaches to Articular Cartilage Mechanics .................................. 392

14.3.1 Nonlinear Fibril-Reinforced Tissue Models ...................................................... 394 14.3.1.1 Fibril-Reinforced Structural FEA of Full-Thickness AC Tissue ....... 394 14.3.1.2 Continuous Collagen Fibril Distribution Model Predictions of

True Collagen Fibril Modulus Changes due to In Vitro Growth Hormone Treatment................................................................................ 395

14.3.2 Nonlinear Viscoelastic Tissue Models ................................................................ 397 14.3.2.1 Collagen Viscoelastic Parameter Changes due to

GAG Depletion........................................................................................ 397 14.3.3 Computational Approaches to Articular Cartilage

Growth and Remodeling ..................................................................................... 399 14.3.3.1 Modeling In Vitro Growth and Remodeling of Articular

Cartilage Tissue ....................................................................................... 399 14.4 Computational Approaches to Whole Knee Joint Mechanics ..................................... 401

14.4.1 Passive versus Active FEA Models of the Knee Joint ....................................... 401 14.4.2 Ligament-Meniscal Injuries and Their Adverse Effects ...................................403 14.4.3 Cartilage Biomechanics and Underlying Bone Injuries ...................................405

14.5 Summary ............................................................................................................................. 407 Acknowledgments ......................................................................................................................408 References .....................................................................................................................................408

Practical difculties and ethical considerations in experimental methods motivate the use of computational models as an indispensable complementary tool for the assessment of biological tissues and joints under both normal and pathological conditions. For example, in the knee joint, different components such as articular cartilage (AC), meniscus, bone, ligament, and muscle tissues provide distinct and complementary roles to facilitate a smooth transition of load between the thigh and the shank. Perturbation of any single component can disrupt the interactions between, and affect the functionality of, all component tissues. Accurate assessment of the biomechanical function of whole joints and the manner in which that function evolves during development and growth, degeneration, and surgical intervention is a challenging task due to complexities in tissue properties, geometry, and loading conditions.