ABSTRACT

Jim Swoger, James Sharpe, and Mark A. Haidekker 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

9.2 Clinical and Biological Measurement Challenges OTT and OPT Are Suited to Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241 9.2.1 Imaging of Mesoscopic-Scale 3D and 4D Samples . . . . . . . . . . . . . . . . . 241

9.3 Technical Implementation of OTT and OPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 9.3.1 X-Ray CT and OTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243 9.3.2 Technical Realization of OTT Scanners . . . . . . . . . . . . . . . . . . . . . . . . . . 245 9.3.3 Differences between OTT and Transmission OPT . . . . . . . . . . . . . . . . . 248 9.3.4 Fluorescence OPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251 9.3.5 Sample Preparation for OPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253 9.3.6 Comparison to Other Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

9.4 Example Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 9.4.1 OTT: Review of Studies Using OTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255 9.4.2 Live OPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258 9.4.3 Fixed Sample Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

9.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 9.5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 9.5.2 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

9.1 Introduction Computed tomography (CT) is a 3D volumetric imaging technique in which multiple projections through an object are measured, and subsequently, its 3D structure is reconstructed using computational algorithms. First implemented in the early 1970s using x-ray radiation (Beckmann 2006), x-ray CT has become a standard tool for medical imaging. Although in medical applications, millimeter-scale resolutions are typical, micro-CT has improved the resolution to the micron level, and under cryogenic conditions, even nanometer resolutions have been demonstrated (Larabell and Le Gros 2004).