Skip to main content
Taylor & Francis Group Logo
    Advanced Search

    Click here to search products using title name,author name and keywords.

    • Login
    • Hi, User  
      • Your Account
      • Logout
      Advanced Search

      Click here to search products using title name,author name and keywords.

      Breadcrumbs Section. Click here to navigate to respective pages.

      Chapter

      Graph-based Anomaly Detection
      loading

      Chapter

      Graph-based Anomaly Detection

      DOI link for Graph-based Anomaly Detection

      Graph-based Anomaly Detection book

      Graph-based Anomaly Detection

      DOI link for Graph-based Anomaly Detection

      Graph-based Anomaly Detection book

      BookPractical Graph Mining with R

      Click here to navigate to parent product.

      Edition 1st Edition
      First Published 2013
      Imprint Chapman and Hall/CRC
      Pages 62
      eBook ISBN 9780429105371
      Share
      Share

      ABSTRACT

      Series Using Random Walks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323 11.2.4 Strengths and Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

      11.3 GBAD Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328 11.3.1 Minimum Description Length . . . . . . . . . . . . . . . . . . . . . . . . . . . 329 11.3.2 How do we define an anomaly using MDL? . . . . . . . . . . . . . 330 11.3.3 What is GBAD all about? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331 11.3.4 GBAD-MDL-Information Theoretic Approach . . . . . . . . 332 11.3.5 GBAD-P-Probabilistic Approach . . . . . . . . . . . . . . . . . . . . . . 334 11.3.6 GBAD-MPS (Maximum Partial Substructure)

      Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337 11.3.7 Strengths and Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

      11.4 Tensor-based Anomaly Detection Algorithm . . . . . . . . . . . . . . . . . . . . 339 11.4.1 What Is a Tensor? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340 11.4.2 Tensor Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

      11.4.2.1 Matricizing or Unfolding . . . . . . . . . . . . . . . . . . . . . 343 11.4.2.2 The n-mode Product . . . . . . . . . . . . . . . . . . . . . . . . . 345 11.4.2.3 The Tucker Decomposition . . . . . . . . . . . . . . . . . . . 346

      11.4.3 Tensor Analysis Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 11.4.3.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 11.4.3.2 Tensor Analysis Algorithm . . . . . . . . . . . . . . . . . . . 347

      11.4.4 Strengths and Weaknesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 11.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351

      . . . . . . . . . . . . . . . . . . . . . . . . .

      T&F logoTaylor & Francis Group logo
      • Policies
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
      • Journals
        • Taylor & Francis Online
        • CogentOA
        • Taylor & Francis Online
        • CogentOA
      • Corporate
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
      • Help & Contact
        • Students/Researchers
        • Librarians/Institutions
        • Students/Researchers
        • Librarians/Institutions
      • Connect with us

      Connect with us

      Registered in England & Wales No. 3099067
      5 Howick Place | London | SW1P 1WG © 2022 Informa UK Limited