ABSTRACT

THOMAS CARZANIGA, DAVIDE ANTONIANI, GIANNI DEHÒ, FEDERICA BRIANI, and PAOLO LANDINI

3.1 BACKGROUND

Most bacteria can switch between two different lifestyles: single cells (planktonic mode) and biofilms, i.e., sessile microbial communities. Planktonic and biofilm cells differ significantly in their physiology and morphology and in their global gene expression pattern [1-3]. Extensive production of extracellular polysaccharides (EPS) represents a defining feature of bacterial biofilms; EPS are the major constituent of the so-called “biofilm matrix”, which also includes cell surface-associated proteins and

nucleic acids [4,5]. In addition to constituting the material embedding biofilm cells and to being a main determinant for surface attachment, the EPS are responsible for cell resistance to environmental stresses such as desiccation [6] and to predation by bacteriophages [7]. In several bacterial species, EPS are also required for swarming motility [8,9].