ABSTRACT

The growing global demand for food will compete with efforts to mitigate Greenhouse Gas (GHG) emissions and adapt to climate change [1,2]. With the expansion of high protein diet among many emerging economies, large land areas will be required for livestock feed production [3,4]. This land use will compete with crops for direct human consumption or biofuel feedstock [5,6]. There is also concern about the large amounts of enteric methane emitted by ruminant livestock [7], as well as the emissions of nitrous oxide and carbon dioxide from all types of livestock operations [8]. Important questions arise about which types of livestock satisfy the demand for protein most efficiently, make the best use of the land resource base and have the lowest carbon footprint. Therefore, to help the live-

stock industries cope with these pressures, an objective set of algorithms that can compare how various livestock types impact the environment and meet growing food demands will be needed.