ABSTRACT

Although the technique of electrospinning originated from the 1930s (Formhals 1934), the rapid development of this technique to produce continuous nanoscale bers only took place in the past decade. This is due to the development in various elds that require the controlled production of nanobers such as tissue engineering, fuel cells, solar cells, batteries, supercapacitors, lter media, and chemical and biosensors (Huang et al. 2003; Chronakis 2005; Subbiah et al. 2005; Zhang et al. 2005b; Pham et al. 2006; Cui et al. 2010; Dong et al. 2011). The demand for electrospun nanobers can be attributed to the ease and cost-effectiveness of mass production, as well as the high surface-areato-volume ratio and excellent mechanical properties that are inherent in electrospun

CONTENTS

8.1 Introduction ........................................................................................................................255 8.2 Mechanical Testing of Single Electrospun Nanobers ................................................256 8.3 Effect of Fiber Processing on Structure and Mechanical Properties .......................... 260

8.3.1 Electrospinning Parameters ................................................................................. 260 8.3.1.1 Fiber Take-Up Velocity ........................................................................... 260 8.3.1.2 Polymer Concentration ........................................................................... 261 8.3.1.3 Other Processing Parameters ................................................................ 263

8.3.2 Postelectrospinning Treatments ..........................................................................264 8.3.2.1 Cross-Linking ..........................................................................................264 8.3.2.2 Chemical Treatment ................................................................................ 265 8.3.2.3 Temperature ............................................................................................. 267

8.3.3 Composite Nanobers ........................................................................................... 268 8.3.3.1 Filler-Reinforced Composites ................................................................ 268 8.3.3.2 Polymer Mixture Composites ............................................................... 271

8.4 Fiber Deformation and Failure Mechanisms ................................................................. 274 8.4.1 Single-Phase Nanobers ....................................................................................... 274 8.4.2 Composite Nanobers ...........................................................................................277