Skip to main content
Taylor & Francis Group Logo
    Advanced Search

    Click here to search products using title name,author name and keywords.

    • Login
    • Hi, User  
      • Your Account
      • Logout
      Advanced Search

      Click here to search products using title name,author name and keywords.

      Breadcrumbs Section. Click here to navigate to respective pages.

      Chapter

      Optical Microfiber Physical Sensors
      loading

      Chapter

      Optical Microfiber Physical Sensors

      DOI link for Optical Microfiber Physical Sensors

      Optical Microfiber Physical Sensors book

      Optical Microfiber Physical Sensors

      DOI link for Optical Microfiber Physical Sensors

      Optical Microfiber Physical Sensors book

      ByGeorge Y. Chen, Gilberto Brambilla
      BookOptical Fiber Sensors

      Click here to navigate to parent product.

      Edition 1st Edition
      First Published 2015
      Imprint CRC Press
      Pages 25
      eBook ISBN 9781315215358
      Share
      Share

      ABSTRACT

      This chapter explores the Optical microfibers and nanofibers (MNFs) in terms of the fabrication techniques and optical and mechanical properties and provides an overview of some MNF-based sensors. Optical MNFs exhibit many desirable characteristics such as large evanescent field, strong optical confinement, bend insensitivity, high configurability, high compactness, and the feasibility of extremely high-Q resonators. The resulting sensors hold numerous advantages over their standard optical fiber counterparts, including high sensitivity, high detection bandwidth, fast response, high selectiveness, low intrusiveness, small size, and lightweight. Resonator-type MNF-based sensors comprise all sensors that exploit resonant structures. MNFs have been used to manufacture homogeneous resonant sensors in the arrangements of loop, knot, and coil. The sensitivity of non-resonator-type MNF-based sensors scales with the MNF length. The detection bandwidth associated with certain sensing mechanisms such as the Faraday effect decreases with longer optical path lengths. A trade-off must be considered for a good balance between sensitivity and detection bandwidth.

      T&F logoTaylor & Francis Group logo
      • Policies
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
      • Journals
        • Taylor & Francis Online
        • CogentOA
        • Taylor & Francis Online
        • CogentOA
      • Corporate
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
      • Help & Contact
        • Students/Researchers
        • Librarians/Institutions
        • Students/Researchers
        • Librarians/Institutions
      • Connect with us

      Connect with us

      Registered in England & Wales No. 3099067
      5 Howick Place | London | SW1P 1WG © 2022 Informa UK Limited