ABSTRACT

OLEDs have the potential to change the way we view information and light our world, but will only do so if companies see a nancial benet in manufacturing OLEDs. OLEDs

17 .1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

17 .2 Materials and Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438 17 .2 .1 Backplane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

17 .2 .1 .1 Organic TFTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 17 .2 .1 .2 Amorphous Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442 17 .2 .1 .3 Low-Temperature Polysilicon . . . . . . . . . . . . . . . . . . . . . . . . . . . 443 17 .2 .1 .4 Metal Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 444 17 .2 .1 .5 Exotic Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 17 .2 .1 .6 Integration Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

17 .3 Processing and Supply Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

17 .4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 17 .4 .1 Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449 17 .4 .2 Lighting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

17 .5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

have had signicant commercial success in small displays, and now appear to be poised for bigger (literally) success in televisions and lighting. Applications including mobile and handheld device displays (i.e., cellphones, smart watches, tablets, cameras, and other devices), televisions, and automobiles, as well as OLED lighting, including general indoor lighting, outdoor lighting, specialty applications, and automotive lighting, are all current or near-future products. While OLEDs are poised to enter the general lighting market, it has taken much longer than many predictions over the past 10 years due to a combination of factors related to cost and performance. In order to succeed in the lighting marketplace, OLEDs will have to continue to decrease cost, while taking advantage of unique attributes such as thin form factor, lightweight, transparency, exibility, color tunability, color quality, switching speed, and power consumption, although dierent attributes will be important for dierent applications. For the near future, it appears that OLEDs will continue to be relatively expensive, with OLED cost higher than incumbent high-eciency/performance technologies, particularly inorganic light-emitting diodes (LEDs) and uorescent lighting for lighting applications, and liquid crystal displays (LCDs), including those with LED backlights for large displays. As OLED performance increases and costs decline, increasing use of OLEDs in applications in televisions, automotive lighting, other outdoor lighting, and general and specialty indoor lighting will become widespread.