ABSTRACT

ABSTRACT: Stiffness variations and wave propagation in the catenary system cause high dynamic variations in the contact force between pantograph and catenary at high operating speeds. In order to increase the operational speed on an existing catenary system, especially on soft catenary systems, technical upgrading is usually required to keep the current collection quality within an acceptable range. Therefore, it is desirable to explore a more practical and cost-saving method to achieve higher operational speed. With the help of a 3D pantograph-catenary finite element (FE) model, a parametric study on two-pantograph operation at short spacing distances is carried out. Results show that although the leading pantograph suffers from deterioration of dynamic performance, the trailing pantograph achieves a better dynamic behaviour by using a proper spacing distance between pantographs. To avoid the additional wear caused by poor dynamic performance on the leading pantograph, it is suggested to use the leading pantograph as an auxiliary pantograph, which does not conduct any electric current. In this way, the operational speed of the existing system can be increased while still sustaining a good dynamic performance without large modifications on the existing catenary system.