This chapter considers potential games, where agents play, each period, Nash worthwhile moves in alternation, such that their unilateral motivation to change rather than to stay, other players being supposed to stay, are high enough with respect to their resistance to change rather than to stay. This defines a generalized proximal alternating linearized algorithm, where resistance to change plays a major role, perturbation terms of alternating proximal algorithms being seen as the disutilities of net costs of moving.