ABSTRACT

The equilibrium states of molecular systems extrermize the system resultant entropy combining the classical (probability) and nonclassical 218 (phase/current) information contributions. Such phase‐transformed states are explored in both the bimolecular reactive complex R = A - - - - B $ {\text{R = A - - - - B}} $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203711392/9929d6e1-053b-4f9b-8672-defba18a7f0a/content/um1a.tif"/> and its acidic (A) and basic (B) reactants. The isolated subsystems A 0 and B 0 exhibit the equilibrium distributions { ρ α 0 = ρ α [ N α 0 , v α ] , $ \{ \rho_{\alpha }^{0} = \rho_{\alpha } [N_{\alpha }^{0} , v_{\alpha } ], $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203711392/9929d6e1-053b-4f9b-8672-defba18a7f0a/content/um2a.tif"/> α = A, B} for their initial (integer) numbers of electrons { N α 0 } $ \{ N_{\alpha }^{0} \} $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203711392/9929d6e1-053b-4f9b-8672-defba18a7f0a/content/um3a.tif"/> and external potentials {v α } due to the fragment constituent nuclei. The intra‐reactant equilibria of the “promoted” subsystems in the polarized reactive system R n + = ( A + | B + ) $ R_{n}^{ + } = (A^{ + } |B^{ + } ) $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203711392/9929d6e1-053b-4f9b-8672-defba18a7f0a/content/um4a.tif"/> , consisting of geometrically rigid but electronically relaxed densities { ρ α + = ρ α + [ N α 0 , v R ] } $ \{ \rho_{\alpha }^{ + } = \rho_{\alpha }^{ + } [N_{\alpha }^{0} , v_{R} ]\} $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203711392/9929d6e1-053b-4f9b-8672-defba18a7f0a/content/um5a.tif"/> of the mutually closed (nonbonded) reactants in the combined external potential v R  = v A  + v B , determine the initial state for the subsequent B → A charge transfer (CT): N CT = N A ∗ $ N_{CT} = N_{A}^{*} $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203711392/9929d6e1-053b-4f9b-8672-defba18a7f0a/content/um6a.tif"/> - N A 0 = N B 0 - N B ∗ > 0 $ - N_{A}^{0} = N_{B}^{0} - N_{B}^{*} > 0 $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203711392/9929d6e1-053b-4f9b-8672-defba18a7f0a/content/um7a.tif"/> . This electron flow establishes the final, interreactant equilibrium in R b ∗ = ( A*|B* ) $ R_{b}^{*} = ({\text{A*|B*}}) $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203711392/9929d6e1-053b-4f9b-8672-defba18a7f0a/content/um8a.tif"/> as a whole, combining the resultant densities { ρ α ∗ = ρ α ∗ [ N α ∗ , v R ] } $ \{ \rho_{\alpha }^{*} = \rho_{\alpha }^{*} [N_{\alpha }^{*} , v_{R} ]\} $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203711392/9929d6e1-053b-4f9b-8672-defba18a7f0a/content/um9a.tif"/> of the geometrically “frozen” but mutually open (bonded) fragments: ρ R = ρ R [ N R , v R ] = Σ α ρ α ∗ , $ \rho_{R} = \rho_{R} [N_{R} , v_{R} ] = \iSigma_{\alpha } \rho_{\alpha }^{*} , $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203711392/9929d6e1-053b-4f9b-8672-defba18a7f0a/content/um10a.tif"/> N R = N A ∗ + N B ∗ = N A 0 + $ N_{R} = N_{A}^{*} + N_{B}^{*} = N_{A}^{0} + $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203711392/9929d6e1-053b-4f9b-8672-defba18a7f0a/content/um11a.tif"/> N A 0 $ N_{A}^{0} $ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780203711392/9929d6e1-053b-4f9b-8672-defba18a7f0a/content/um12a.tif"/> . The continuity equations are summarized and the in situ descriptors of CT processes between such polarized complementary subsystems in their internal equilibrium states are examined. The classical and non-classical contributions to the resultant entropy/information measures are partitioned into their additive and nonadditive components. It is argued that for the internal equilibria in polarized reactants, the nonvanishing in situ CT derivatives of the system resultant entropies are due to their nonadditive contributions alone.