ABSTRACT

Prostate cancer is the most frequently diagnosed malignancy in North American men and the second leading cause of cancer-related death, accounting for an estimated 33,000 deaths annually (1). The standard first-line therapy for advanced prostate cancer is androgen deprivation therapy and although initially effective in controlling the disease progression to androgen-independent prostate cancer (AIPC) is inevitable. This critical step is associated with an increased expression of growth factors and receptors capable of establishing autocrine and/or paracrine growth stimulatory loops. The epidermal growth factor receptor (EGFR) family and its ligands which promote cell-cycle progression, inhibition of apoptosis, angiogenesis, tumor cell motility, metastases, and is involved in the pathogenesis and progression of several human cancers have been implicated in this process (2). During progression to androgen independence, EGFR expression increases which correlates with a worse overall prognosis, making the EGFR a relevant therapeutic target in prostate cancer (3). A novel class of anti-cancer agents that specifically inhibit EGFR signaling have recently entered clinical trials in a wide range of cancer types. In prostate cancer, they are being evaluated as monotherapy and in combination with hormonal therapy, radiation therapy, chemotherapy, and other targeted agents at various stages of the disease.