ABSTRACT

In recent years, there has been a significant increase in pressure on pharmaceutical companies to discover and develop new medicines ever faster to replace those coming off patent and to counter generic manufacturer competition (Frantz, 2007). Despite the expenditure of many billons of dollars, Joshi (2007) reports that since 1990 an average of only 28 drugs have been approved each year, with the Food and Drug Administration (FDA) approving only 17 new chemical entities (NCEs) in 2002, the lowest number of new drug approvals for the decade leading up to that year (Kola and Landis, 2004). Indeed, the success rate achieved by the industry of bringing a candidate drug (CD) to market is no more than 10% (Schmid and Smith, 2006), and it is estimated that of 30,000 compounds synthesized only 0.003% of discovery compounds will show a satisfactory return on investment (Federsel, 2003). The majority of the attrition occurs in phase II and phase III of development, with approximately 62% of compounds entering phase II undergoing attrition (Kola and Landis, 2004). So, not only does the number of compounds being brought through from discovery phase need to increase, but the amount of effort expended on them needs to reflect the attrition that will occur as they are progressed through early development. One idea being mooted to increase the productivity of the drug discovery process is the concept of lean thinking, which has been used in pharmaceutical manufacturing for process improvement (Petrillo, 2007). Simply put, lean concepts aim to eliminate those steps in the process that do not add value to the process chain. It has been estimated that utilizing lean concepts in the discovery phase, combined with other methods of increasing productivity, would lead to an increase (from 1 in 5 to 1 to 3) in compounds entering clinical trials.