ABSTRACT

The effects of joint geometry on the engineering properties of structural silicone sealants are discussed. In particular, the relationship between the joint cross-sectional area at various aspect ratios commonly used in practice (ratio of sealant bite to glueline thickness) of the joint and its mechanical behaviour is examined. Using the principles of the William-Landel-Ferry (WLF) superimposition technique, the effects of deformation rate, temperature and joint cross-sectional area on sealant strength are determined. This is achieved through the generation of master curves for estimating the strength of the structural sealant, based on the traditionally used temperature-deformation rate shift factor (aT) in addition to the geometry-related shift factor (aG) proposed here.