ABSTRACT

Biomass is the largest source of renewable energy in the United States, and corn ethanol currently constitutes the vast majority of the country’s biofuel. Extended plantation of annual crops for biofuel production, however, has raised concerns about long-term environmental, ecological, and socioeconomic consequences. Switchgrass (Panicum virgatum L.), along with other warm-season grasses, is native to the precolonial tallgrass prairie in North America and is identified as an alternative energy crop for cellulosic feedstocks. This article describes a phenology-based geospatial approach to mapping the geographic distribution of this perennial energy crop in the tallgrass prairie. Time series of Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery (500-m resolution, eight-day interval) in 2007 were processed to extract five phenology metrics: end of season, season length, peak season, summer dry-down, and cumulative growth. A multitier decision tree was developed to map major crops, especially native prairie grasses in the region. The geographic context of the 20 million ha of perennial native grasses extracted in this study could be combined with economic and environmental considerations in a geographic information system to assist decision making for energy crop development in the prairie region. Key Words: bioenergy, crop phenology, MODIS imagery, time-series analysis.