ABSTRACT

Theoretical neurophysiology rests on certain cardinal assumptions. The nervous system is a net of neurons, each having a soma and an axon. Their adjunctions, or synapses, are always between the axon of one neuron and the soma of another. At any instant a neuron has some threshold, which excitation must exceed to initiate an impulse. This, except for the fact and the time of its occurrence, is determined by the neuron, not by the excitation. From the point of excitation the impulse is propagated to all parts of the neuron. The velocity along the axon varies directly with its diameter, from less than one meter per second in thin axons, which are usually short, to more than 150 meters per second in thick axons, which are usually long. The time for axonal conduction is consequently of little importance in determining the time of arrival of impulses at points unequally remote from the same source. Excitation across synapses occurs predominantly from axonal terminations to somata. It is still a moot point whether this depends upon irreciprocity of individual synapses or merely upon prevalent anatomical configurations. To suppose the latter requires no hypothesis ad hoc and explains known exceptions, but any assumption as to cause is compatible with the calculus to come. No case is known in which excitation through a single synapse has elicited a nervous impulse in any neuron, whereas any neuron may be excited by impulses arriving at a sufficient number of neighboring synapses within the period of latent addition, which lasts less than one quarter of a millisecond. Observed temporal summation of impulses at greater intervals is impossible for single neurons and empirically depends upon structural properties of the net. Between the arrival of impulses upon a neuron and its own propagated impulse there is a synaptic delay of more than half a millisecond. During the first part of the nervous impulse the neuron is absolutely refractory to any stimulation. Thereafter its excitability returns rapidly, in some cases reaching a value above normal from which it sinks again to a subnormal value, whence it returns slowly to normal. Frequent activity augments this subnormality. Such specificity as is possessed by nervous impulses depends solely upon their time and place and not on any other specificity of nervous energies. Of late only inhibition. has been seriously adduced to contravene this thesis. Inhibition is the termination or prevention of the activity of one group of neurons by concurrent or antecedent activity of a second group. Until recently this could be explained on the supposition that previous activity of neurons of the second group might so raise the thresholds of internuncial neurons that they could no longer be excited by neurons of the first group, whereas the impulses of the first group must sum with the impulses of these internuncials to excite the now inhibited neurons. Today, some inhibitions have been shown to consume less than one millisecond. This excludes internuncials and requires synapses 94through which impulses inhibit that neuron which is being stimulated by impulses through other synapses. As yet experiment has not shown whether the refractoriness is relative or absolute. We will assume the latter and demonstrate that the difference is immaterial to our argument. Either variety of refractoriness can be accounted for in either of two ways. The “inhibitory synapse” may be of such a kind as to produce a substance which raises the threshold of the neuron, or it may be so placed that the local disturbance produced by its excitation opposes the alteration induced by the otherwise excitatory synapses. Inasmuch as position is already known to have such effects in the case of electrical stimulation, the first hypothesis is to be excluded unless and until it be substantiated, for the second involves no new hypothesis. We have, then, two explanations of inhibition based on the same general premises, differing only in the assumed nervous nets and, consequently, in the time required for inhibition. Hereafter we shall refer to such nervous nets as equivalent in the extended sense. Since we are concerned with properties of nets which are invariant under equivalence, we may make the physical assumptions which are most convenient for the calculus.