Skip to main content
Taylor & Francis Group Logo
Advanced Search

Click here to search books using title name,author name and keywords.

  • Login
  • Hi, User  
    • Your Account
    • Logout
Advanced Search

Click here to search books using title name,author name and keywords.

Breadcrumbs Section. Click here to navigate to respective pages.

Chapter

Designing with Mobile Technologies for Enabling Transitions across Mathematical Contexts

Chapter

Designing with Mobile Technologies for Enabling Transitions across Mathematical Contexts

DOI link for Designing with Mobile Technologies for Enabling Transitions across Mathematical Contexts

Designing with Mobile Technologies for Enabling Transitions across Mathematical Contexts book

Designing with Mobile Technologies for Enabling Transitions across Mathematical Contexts

DOI link for Designing with Mobile Technologies for Enabling Transitions across Mathematical Contexts

Designing with Mobile Technologies for Enabling Transitions across Mathematical Contexts book

BookMobile Learning and Mathematics

Click here to navigate to parent product.

Edition 1st Edition
First Published 2015
Imprint Routledge
Pages 15
eBook ISBN 9781315814346

ABSTRACT

This chapter focuses on the use of a tablet game in a school setting to learn algebra. The positive results recorded in 142 out of 164 studies, with only one study having a negative outcome of mobile learning, can be interpreted as a mix of technology suited for learning, a Hawthorne effect, and pure optimism on the part of the new inventions. The study reported in the chapter focuses on the use of a tablet game in school setting to learn algebra. DragonBox is an algebra game for tablet computers discussed in the chapter. An approach related to stealth learning, known by Habgood and MPJ Ainsworth as intrinsic integration, is the idea of designing the game in a way that puts the essentials of the learning content in the critical parts of the gameplay. Playing games in math can be seen as an alternative for lower-achieving pupils, providing an alternative method to teaching and solving regular algebra.

T&F logoTaylor & Francis Group logo
  • Policies
    • Privacy Policy
    • Terms & Conditions
    • Cookie Policy
    • Privacy Policy
    • Terms & Conditions
    • Cookie Policy
  • Journals
    • Taylor & Francis Online
    • CogentOA
    • Taylor & Francis Online
    • CogentOA
  • Corporate
    • Taylor & Francis Group
    • Taylor & Francis Group
    • Taylor & Francis Group
    • Taylor & Francis Group
  • Help & Contact
    • Students/Researchers
    • Librarians/Institutions
    • Students/Researchers
    • Librarians/Institutions
  • Connect with us

Connect with us

Registered in England & Wales No. 3099067
5 Howick Place | London | SW1P 1WG © 2021 Informa UK Limited