ABSTRACT

Biofertilizers are becoming increasingly popular in many countries and for many crops. They are defined as products containing active or latent strains of soil microorganisms, either bacteria alone or in combination with algae or fungi that increase the plant availability and uptake of mineral nutrients [1]. In general, they contain free-living organisms associated with root surfaces but they may also include endophytes, microorganisms that are able to colonize the intercellular or even intracellular spaces of plant tissues without causing apparent damage to the host plant. The concept of biofertilizers was developed based on the observation that these microorganisms can have a beneficial effect on plant and crop growth (e.g., [2]). Consequently, a range of plant growth-promoting rhizobacteria (PGPR) has been identified and well characterized. Direct beneficial effects can occur when the microorganisms provide the plants with useful products. The best known case of this are microorganisms that can directly obtain N

from the atmosphere and convert this into organic forms usable by plants. Such biological nitrogen fixers (BNF) include members of the genus Rhizobium, Azospirillum, and blue-green algae. Rhizobia are symbiotically associated with legumes and nitrogen fixation occurs within root or stem nodules where the bacterium resides [3]. The genus Azospirillum also has several N-fixing species, which are rhizobacteria associated with monocots and dicots such as grasses, wheat, maize and Brassica chinensis L. [4,5]. Azospirillum strains have been isolated from rice repeatedly, and recently the strain Azospirillum sp. B510 has been sequenced [6,7]. Considerable N fixation by Azotobacter spp. and Azospirillum spp. in the rice crop rhizosphere was reported repeatedly [6,8], but others [9] questioned such high amounts of non-symbiotic N fixation in agriculture. Instead, it was hypothesized that the beneficial effect of Azospirillum inoculums may not derive from its N-fixing properties but from its stimulating effect on root development [2], probably often triggered by phytohormones [10]. This view was confirmed by [11], who concluded that the main effect of Azospirillum spp. is the stimulation of the density and length of root hairs, the rate of appearance of lateral roots, and the root surface area. Phytohormone production and a beneficial effect on plant growth were also shown for a range of other microorganisms [12,13].