Skip to main content
Taylor & Francis Group Logo
Advanced Search

Click here to search books using title name,author name and keywords.

  • Login
  • Hi, User  
    • Your Account
    • Logout
Advanced Search

Click here to search books using title name,author name and keywords.

Breadcrumbs Section. Click here to navigate to respective pages.

Chapter

Interval-based parameters for stress diffusion in granular medium

Chapter

Interval-based parameters for stress diffusion in granular medium

DOI link for Interval-based parameters for stress diffusion in granular medium

Interval-based parameters for stress diffusion in granular medium book

Interval-based parameters for stress diffusion in granular medium

DOI link for Interval-based parameters for stress diffusion in granular medium

Interval-based parameters for stress diffusion in granular medium book

ByD. Boumezerane
BookSafety and Reliability – Safe Societies in a Changing World

Click here to navigate to parent product.

Edition 1st Edition
First Published 2018
Imprint CRC Press
Pages 6
eBook ISBN 9781351174664

ABSTRACT

According to Bourdeau (1986), diffusion of stresses in a granular medium can be described using a probabilistic approach. A point load applied on the surface of a granular media will follow an erratic path, depending on the probability of transition between the grains. The diffusion of the expected vertical stress in the granular medium can be described by a Fokker-Planck type equation. In terms of expected vertical stresses, an equation of diffusion is obtained and the parameter of diffusion is shown to approximate the coefficient of lateral pressure of the material at a given depth z. The coefficient of lateral pressure of the material can be expressed in terms of intervals with upper and lower values to account for uncertainty.

In the present approach, we propose to solve the diffusion equation using interval-based parameters to account for uncertainty. Uncertain parameters are considered as discretized fuzzy numbers; they are combined with finite difference method to solve the diffusion equation. Comparisons are made with experimental and available data.

T&F logoTaylor & Francis Group logo
  • Policies
    • Privacy Policy
    • Terms & Conditions
    • Cookie Policy
    • Privacy Policy
    • Terms & Conditions
    • Cookie Policy
  • Journals
    • Taylor & Francis Online
    • CogentOA
    • Taylor & Francis Online
    • CogentOA
  • Corporate
    • Taylor & Francis Group
    • Taylor & Francis Group
    • Taylor & Francis Group
    • Taylor & Francis Group
  • Help & Contact
    • Students/Researchers
    • Librarians/Institutions
    • Students/Researchers
    • Librarians/Institutions
  • Connect with us

Connect with us

Registered in England & Wales No. 3099067
5 Howick Place | London | SW1P 1WG © 2021 Informa UK Limited