ABSTRACT

Applications to Physical and Biological Sciences 65 Linear Algebra and Mathematical Physics Lorenzo Sadun . . . . . . . . . . . . 65-1

66 Linear Algebra in Biomolecular Modeling Zhijun Wu . . . . . . . . . . . . . . . . . 66-1

67 Linear Algebra in Mathematical Population Biology and Epidemiology Fred Brauer and Carlos Castillo-Chavez . . . . . . . . . . . . . . . . . . . . 67-1

Applications to Optimization 68 Linear Programming Leonid N. Vaserstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68-1

69 Semidefinite Programming Henry Wolkowicz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69-1

Applications to Probability and Statistics 70 Random Vectors and Linear Statistical Models Simo Puntanen and

George P. H. Styan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70-1

71 Multivariate Statistical Analysis Simo Puntanen, George A. F. Seber, and George P. H. Styan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71-1

72 Markov Chains Beatrice Meini . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72-1

Applications to Computer Science 73 Coding Theory Joachim Rosenthal and Paul Weiner . . . . . . . . . . . . . . . . . . . . . . 73-1

74 Quantum Computation Zijian Diao . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74-1

75 Operator Quantum Error Correction Chi-Kwong Li, Yiu-Tung Poon, and Nung-Sing Sze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75-1

76 Information Retrieval and Web Search Amy N. Langville and Carl D. Meyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76-1

77 Signal Processing Michael Stewart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77-1

Applications to Analysis 78 Differential Equations and Stability Volker Mehrmann and

Tatjana Stykel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78-1

79 Dynamical Systems and Linear Algebra Fritz Colonius and Wolfgang Kliemann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79-1

80 Control Theory Peter Benner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80-1

81 Fourier Analysis Kenneth Howell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81-1

Applications to Geometry 82 Geometry Mark Hunacek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82-1

83 Some Applications of Matrices and Graphs in Euclidean Geometry Miroslav Fiedler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83-1

Applications to Algebra 84 Matrix Groups Peter J. Cameron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84-1

85 Group Representations Randall R. Holmes and Tin-Yau Tam . . . . . . . . . . . 85-1

86 Nonassociative Algebras Murray R. Bremner, Lucia I. Murakami, and Ivan P. Shestakov . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86-1

87 Lie Algebras Robert Wilson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87-1

65 Linear Algebra and Mathematical Physics Lorenzo Sadun . . . . . . . . . . . . 65-1

66 Linear Algebra in Biomolecular Modeling Zhijun Wu . . . . . . . . . . . . . . . . . 66-1

67 Linear Algebra in Mathematical Population Biology and Epidemiology Fred Brauer and Carlos Castillo-Chavez . . . . . . . . . . . . . . . . . . . . 67-1

Linear algebra appears throughout physics. Linear differential equations, both ordinary and partial, appear through classical and quantum physics. Even where the equations are nonlinear, linear approximations are extremely powerful.