ABSTRACT

These brakes have the advantage of greater torque for a smaller axial force than either type of disk brake discussed in Chapter 5. The magnitude of the improvement is limited, however, by the observation that for small cone angles a disengagement force may be required, depending on the friction coefficient, because the inner and outer cones may tend to wedge together. This is because on engagement the inner cone is radially compressed and the outer cone is radially enlarged as the brake is engaged. For small cone angles the induced friction force dominates the normal force, which tends to expel the inner cone, so that an external force is required for separation. This characteristic, however, may be useful in those applications where a brake is to remain engaged in the presence of disengagement forces.