Skip to main content
Taylor & Francis Group Logo
    Advanced Search

    Click here to search products using title name,author name and keywords.

    • Login
    • Hi, User  
      • Your Account
      • Logout
      Advanced Search

      Click here to search products using title name,author name and keywords.

      Breadcrumbs Section. Click here to navigate to respective pages.

      Chapter

      Applications in Scanning Probe Microscopy
      loading

      Chapter

      Applications in Scanning Probe Microscopy

      DOI link for Applications in Scanning Probe Microscopy

      Applications in Scanning Probe Microscopy book

      Applications in Scanning Probe Microscopy

      DOI link for Applications in Scanning Probe Microscopy

      Applications in Scanning Probe Microscopy book

      Edited ByM. Meyyappan
      BookCarbon Nanotubes

      Click here to navigate to parent product.

      Edition 1st Edition
      First Published 2004
      Imprint CRC Press
      Pages 26
      eBook ISBN 9780429209512
      Share
      Share

      ABSTRACT

      Scanning probe microscopy (SPM) and the subset scanning-force microscopy (SFM) have seen tremendous development and progress in the past two decades since Binnng et al. [1] introduced the atomicforce microscope (AFM) in 1986. AFM has become an essential scientific research tool, particularly in the field of nanoscale science and technology. Because of its versatility, SPM has emerged as one of the techniques of choice for the investigation of single molecule phenomena in areas of scientific research from molecular biology to nanoscale fabrication. SPM is also playing an increasing role as a surface characterization technique for industrial applications; this is particularly important in semiconductor industry as devices approach length scales below the 100-nm regime. Some of the examples for industrial applications are (1) magnetic force microscopy (MFM) as applied in the data storage industry for the characterization of magnetic domains, (2) scanning capacitance microscopy for the characterization of gate dopant density, and (3) as a general surface roughness characterization of ultrathin films. With further understanding of these existing techniques and with more novel variations currently under development, SPM will become an even more important tool in scientific research and nanotechnology applications.

      T&F logoTaylor & Francis Group logo
      • Policies
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
      • Journals
        • Taylor & Francis Online
        • CogentOA
        • Taylor & Francis Online
        • CogentOA
      • Corporate
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
      • Help & Contact
        • Students/Researchers
        • Librarians/Institutions
        • Students/Researchers
        • Librarians/Institutions
      • Connect with us

      Connect with us

      Registered in England & Wales No. 3099067
      5 Howick Place | London | SW1P 1WG © 2022 Informa UK Limited