Skip to main content
Taylor & Francis Group Logo
Advanced Search

Click here to search books using title name,author name and keywords.

  • Login
  • Hi, User  
    • Your Account
    • Logout
Advanced Search

Click here to search books using title name,author name and keywords.

Breadcrumbs Section. Click here to navigate to respective pages.

Chapter

Chapter 7

Chapter

Chapter 7

DOI link for Chapter 7

Chapter 7 book

Theory of Distortions

Chapter 7

DOI link for Chapter 7

Chapter 7 book

Theory of Distortions
ByPearson Frederick
BookMap Projections:

Click here to navigate to parent product.

Edition 1st Edition
First Published 1990
Imprint CRC Press
Pages 22
eBook ISBN 9780203748121

ABSTRACT

Before exploring the methods for expressing distortion quantitatively, it is necessary to consider the accuracy required to estimate the effect of distortions. This chapter suggests that two or three significant figures are all that are necessary to give a realistic estimate of distortion. It is evident that a spherical model of the Earth is all that is needed to obtain this degree of accuracy. The orthographic projection suffers distortion as the equator is approached. The distortion in the gnomonic projection is more severe, and the equator itself can never be portrayed. In all cases, distortion is independent of longitude. Quantitative values for distortion are needed for comparing distortions in length, area, and angle. Distortion in length can be rather simply estimated from geometric considerations. In order to describe distortion in length, the chapter considers a two-dimensional plotting surface and derives terms for distortion along the parallels and meridians, as compared to true distance along a sphere.

T&F logoTaylor & Francis Group logo
  • Policies
    • Privacy Policy
    • Terms & Conditions
    • Cookie Policy
    • Privacy Policy
    • Terms & Conditions
    • Cookie Policy
  • Journals
    • Taylor & Francis Online
    • CogentOA
    • Taylor & Francis Online
    • CogentOA
  • Corporate
    • Taylor & Francis Group
    • Taylor & Francis Group
    • Taylor & Francis Group
    • Taylor & Francis Group
  • Help & Contact
    • Students/Researchers
    • Librarians/Institutions
    • Students/Researchers
    • Librarians/Institutions
  • Connect with us

Connect with us

Registered in England & Wales No. 3099067
5 Howick Place | London | SW1P 1WG © 2021 Informa UK Limited