ABSTRACT

Part I discussed the basics of industrial servo drives from a hardware point of view. Physical parameters and practical applications were discussed. Part II repeats some of the things in Part I but from a mathematical point of view. The advanced application of industrial servo drives requires the use of differential equations to describe mechanical, electrical, and fluid systems. As applied to servo drives there are numerous academic techniques to analyze these systems (e.g., root locus, Nyquist diagrams, etc.). In working with industrial machinery we live in a sinusoidal world with such things as structural machine resonances. Thus frequency analysis is used in Part II to describe and analyze industrial servo systems. To solve the differential equations describing the physical systems of servo drives, transformation calculus is used to obtain the required transfer functions for the components of servo drives and in analyzing the servo system.