ABSTRACT

Chapter 10 includes questions and problems dealing with the compaction properties for asphalt mixtures in the Superpave gyratory compactor (SGC), the compactive effort, the Superpave criteria for gyratory compaction, and the computations related to gyratory compaction of asphalt mixtures. The Superpave gyratory compactor simulates the compaction that takes place in field. Three levels of compaction are typically used in Superpave: Ninitial, Ndesign, and Nmaximum. Ninitial measures mixture compactability during construction and can easily verify if the mixture is tender during construction and unstable under traffic. Ndesign measures the density of the mixture that is equivalent to the density in the field after specific traffic loadings. On the other hand, Nmaximum measures the maximum mixture in field that should never be exceeded. Asphalt mixtures with very low air voids at Nmaximum indicate that these mixtures may experience excessive compaction under traffic resulting in low air voids, bleeding, and rutting. Therefore, during gyratory compaction, the behavior of asphalt mixture is monitored, and density and air voids are calculated for the asphalt mixture. The compaction properties provide a good idea about the tenderness and stiffness of the mixture and can predict the behavior of the mixture in pavement under traffic throughout the service life of the pavement.

In asphalt mixture with the following data is being compacted using the Superpave gyratory compactor (SGC). The compaction data (the mixture height versus the number of gyrations) is also given in Table 10.1.

Diameter of gyratory specimen = 150 mm (≅ 6 in)

Maximum theoretical specific gravity (Gmm) for the loose mixture = 2.537

Specific gravity for coarse aggregate used in the mixture = 2.605

Specific gravity for fine aggregate used in the mixture = 2.507

Percent passing sieve No. 4 (4.75 mm) for the aggregate gradation used in the mixture = 62%

Date on the bulk specific gravity for the compacted mixture is given in Table 10.2:278

Compute the following parameters during compaction:

The estimated bulk specific gravity (Gmb-Estimated)

The correction factor for bulk specific gravity

The corrected bulk specific gravity (Gmb-Corrected)

The percent maximum specific gravity (%Gmm)

The percentage of air voids (Va)

Solution:

In the beginning, the bulk specific gravity of the compacted specimen is computed as shown below:

G mb-Measured = A B − C https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0001.tif"/>

Where:

Gmb-Measured = bulk specific gravity of compacted specimen measured in the lab

A = weight of specimen in air (g)

B = weight of saturated-surface dry (SSD) specimen (g)

C = weight of specimen in water (g)279

G mb-Measured = 4795.6 4802.2 − 2790.0 = 2.383 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0002.tif"/>

The bulk specific gravity of the aggregate used in the mixture is calculated using the formula below:

G sb = P CA + P FA P CA G sb-CA + P FA G sb-FA = 100 P CA G sb-CA + P FA G sb-FA https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0003.tif"/>

Where:

PCA = percentage of coarse aggregate in the aggregate gradation

PFA = percentage of fine aggregate in the aggregate gradation

Gsb-CA = bulk specific gravity of coarse aggregate

Gsb-FA = bulk specific gravity of fine aggregate

PFA = percentage of material passing sieve No. 4 = 62%

P CA = 100 − P FA https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0004.tif"/>

P CA = 100 − 62 = 38 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0005.tif"/>

G sb = P CA + P FA P CA G sb-CA + P FA G sb-FA https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0006.tif"/>

G sb = 38 + 62 38 2.605 + 62 2.507 = 2.543 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0007.tif"/>

To determine the estimated bulk specific gravity (Gmb-Estimated) for the asphalt mixture during compaction, the volume of the mixture should be computed as shown below:

V = π D 2 4 H https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0008.tif"/>

Where:

V = volume of mixture

D = diameter of specimen (150 mm)

H = height of mixture inside mold during compaction

G mb-Estimated = W V γ w https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0009.tif"/>

Where:

W = weight of mixture or compacted specimen (g)

γw = density of water (1 g/cm3)

Sample Calculation:

At number of gyrations (N) = 5, the height of the mixture (H) = 128.8 mm.

V = π D 2 4 H https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0010.tif"/> 280

V = π ( 150 × 0.1 ) 2 4 ( 128.8 × 0.1 ) = 2276.1   cm 3 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0011.tif"/>

W = weight of the mixture = weight of compacted specimen in air = 4795.6 g

G mb-Estimated = W V γ w https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0012.tif"/>

G mb-Estimated = 4795.6 2276.1 × 1 = 2.107 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0013.tif"/>

The estimated bulk specific gravity at all other values for the number of gyrations (N) is computed in a similar manner as above.

The correction factor for bulk specific gravity is determined according to the procedure shown below:

The estimated bulk specific gravity is determined at the end of compaction (at number of gyrations, N = 174). The measured bulk specific gravity for the compacted specimen is also determined using Equation (10.1). The correction factor for bulk specific gravity is then determined by dividing the measured bulk specific gravity by the estimated bulk specific gravity according to the following formula:

C F = G mb-Measured G mb-Estimated https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0014.tif"/>

Where:

CF = correction factor for bulk specific gravity

Gmb-Measured = measured bulk specific gravity of compacted specimen

Gmb-Estimated = estimated bulk specific gravity of asphalt mixture at the end of compaction determined using Equation (10.5).

At the end of compaction when the number of gyrations (N) = 174, the height of the mixture (H) = 114.9 mm

V = ( π D 2 4 ) H https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0015.tif"/>

V = π ( 150 × 0.1 ) 2 4 ( 114.9 × 0.1 ) = 2030.5   cm 3 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0016.tif"/>

W = weight of the mixture = weight of compacted specimen in air = 4795.6 g

G mb-Estimated = W V γ w https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0017.tif"/>

G mb-Estimated = 4795.6 2030.5 × 1 = 2.362 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0018.tif"/> 281

Gmb-Measured = 2.383 determined above.

C F = G mb-Measured G mb-Estimated https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0019.tif"/>

C F = 2.383 2.362 = 1.009 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0020.tif"/>

The corrected bulk specific gravity (Gmb-Corrected) at a specific number of gyrations is determined by multiplying the estimated bulk specific gravity at that number of gyrations by the correction factor:

Sample Calculation:

G mb-Corrected = C F × G mb-Estimated https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0021.tif"/>

At N = 5 gyrations, the estimated bulk specific gravity is determined above as:

G mb-Estimated = 2.107 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0022.tif"/>

G mb-Corrected = C F × G mb-Estimated https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0023.tif"/>

G mb-Corrected = 1.009 × 2.107 = 2.126 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0024.tif"/>

The corrected bulk specific gravity is determined at all other values for the number of gyrations (N) following the same procedure.

The percent maximum specific gravity (%Gmm) is defined as the corrected bulk specific gravity of the mixture during compaction divided by the maximum theoretical specific gravity (Gmm) of the mixture as a percentage. In other words, it represents the density of the mixture as a percentage by comparing the density of the mixture during compaction to the maximum density of the mixture when it is loose.

Therefore,

% G mm = G mb-Corrected G mm × 100 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0025.tif"/>

Where:

%Gmm = percentage of maximum theoretical specific gravity of the mixture at a specific number of gyrations during compaction

Gmm = maximum theoretical specific gravity of the loose mixture

Gmb-Corrected = corrected bulk specific gravity at a specific number of gyrations during compaction

Sample Calculation:

At N = 5 gyrations,

% G mm = G mb-Corrected G mm × 100 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0026.tif"/>

⇒282

% G mm = 2.126 2.537 × 100 % = 83.8 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0027.tif"/>

The %Gmm is determined at all other values for the number of gyrations (N) following the same procedure.

The percentage of air voids (Va) is determined as:

V a = 100 − % G mm https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0028.tif"/>

Where:

Va = percentage of air voids in the mixture at a specific number of gyrations during compaction

%Gmm = percentage of maximum theoretical specific gravity of the mixture at a specific ­number of gyrations during compaction

Sample Calculation:

At N = 5 gyrations,

V a = 100 − % G mm https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0029.tif"/>

V a = 100 − 83.8 = 16.2 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0030.tif"/>

The MS Excel worksheet used to perform the computations of this problem is shown in Figure 10.1.

283

The detailed computations for the compaction properties of the asphalt mixture in Problem 10.1 are shown in Table 10.3.284 285 286 287

Plot the relationship between the number of gyrations (N) and the %Gmm during compaction for the asphalt mixture in Problem 5.1. Comment on the behavior of this mixture during compaction and compare the properties %Gmm @Ninitial, %Gmm at Ndesign, and %Gmm at Nmaximum with the Superpave criteria knowing that Ninitial = 8 gyrations, Ndesign = 109 gyrations, and Nmaximum = 174 gyrations, and the traffic level that this mixture is designed for is 12 million ESALs.

Solution:

The number of gyrations, N is plotted against the %Gmm during compaction for the asphalt mixture as shown in Figure 10.2. A semi-log scale is used in this figure.

According to the Superpave criteria, the %Gmm @Ninitial ≤ 89%, %Gmm at Ndesign = 96%, and %Gmm at Nmaximum ≤ 98%. Therefore, the two borders at Ninitial = 8 gyrations and Nmaximum = 109 gyrations are plotted as shown in Figure 10.1.

The behavior of this asphalt mixture during gyrator compaction does well and passes the Superpave specifications for the %Gmm @Ninitial = 85.3% ≤ 89%, and for the %Gmm at Nmaximum = 93.9% ≤ 98%. However, the mixture does not pass the Superpave specifications for the %Gmm at Ndesign = 93.1% ≠ 96%. In other words, the air-void content is equal to 6.9% at Ndesign; it should be 4%. In conclusion, the mixture does not meet the Superpave criteria.

Perform the necessary computations for the asphalt mixture with the data given below to determine the air-void content during gyratory compaction:

Diameter of gyratory specimen = 150 mm (≅ 6 in)

Maximum theoretical specific gravity (Gmm) for the loose mixture = 2.497

Bulk specific gravity of aggregate used in the mixture = 2.543

Bulk specific gravity of compacted specimen = 2.407

Weight of asphalt mixture = 4776.9 g

Gyratory compaction data (see Table 10.4).288

Solution:

The estimated bulk specific gravity (Gmb-Estimated) for the asphalt mixture during compaction is determined.

Sample Calculation:

At number of gyrations (N) = 8, the height of the mixture (H) = 123.8 mm.

V = π D 2 4 H https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0031.tif"/>

V = π ( 150 × 0.1 ) 2 4 ( 123.8 × 0.1 ) = 2187.7   cm 3 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0032.tif"/>

W = weight of the mixture = weight of compacted specimen in air = 4776.9 g

G mb-Estimated = W V γ w https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0033.tif"/> 289

G mb-Estimated = 4776.9 2187.7 × 1 = 2.183 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0034.tif"/>

The estimated bulk specific gravity at all other values for the number of gyrations (N) is computed in a similar manner as above.

The correction factor for bulk specific gravity is determined as described in the procedure below:

The correction factor for bulk specific gravity is defined as the measured bulk specific gravity divided by the estimated bulk specific gravity at Nmaximum (at the end of gyrations or gyratory compaction):

At the end of compaction when the number of gyrations (N) = 174, the height of the mixture (H) = 114.0 mm.

V = ( π D 2 4 ) H https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0035.tif"/>

V = π ( 150 × 0.1 ) 2 4 ( 114.0 × 0.1 ) = 2014.5   cm 3 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0036.tif"/>

W = weight of the mixture = weight of compacted specimen in air = 4795.6 g

G mb-Estimated = W V γ w https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0037.tif"/>

G mb-Estimated = 4776.9 2014.5 × 1 = 2.371 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0038.tif"/>

Gmb-Measured = 2.407 (given in the problem).

C F = G mb-Measured G mb-Estimated https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0039.tif"/>

C F = 2.407 2.371 = 1.015 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0040.tif"/>

The corrected bulk specific gravity (Gmb-Corrected) at a specific number of gyrations is determined by multiplying the estimated bulk specific gravity at that number of gyrations by the correction factor:

Sample Calculation:

G mb-Corrected = C F × G mb-Estimated https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0041.tif"/>

At N = 8 gyrations, the estimated bulk specific gravity is determined above as:

G mb-Estimated = 2.183 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0042.tif"/> 290

G mb-Corrected = C F × G mb-Estimated https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0043.tif"/>

G mb-Corrected = 1.015 × 2.183 = 2.216 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0044.tif"/>

The corrected bulk specific gravity is determined at all other values for the number of gyrations (N) following the same procedure.

The percent maximum specific gravity (%Gmm) is determined using the formula below:

% G mm = G mb-Corrected G mm × 100 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0045.tif"/>

Sample Calculation:

At N = 8 gyrations,

% G mm = G mb-Corrected G mm × 100 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0046.tif"/>

% G mm = 2.216 2.497 × 100 % = 88.8 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0047.tif"/>

The %Gmm is determined at all other values for the number of gyrations (N) following the same procedure.

The percentage of air voids (Va) is determined using the formula shown below:

V a = 100 − % G mm https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0048.tif"/>

Sample Calculation:

At N = 8 gyrations,

V a = 100 − % G mm https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0049.tif"/>

V a = 100 − 88.8 = 11.2 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0050.tif"/>

The MS Excel worksheet used to perform the computations of this problem is shown in Figure 10.3.

291

The Superpave gyratory compaction data and analysis for an asphalt mixture are given in Table 10.5. Determine the volumetric properties at Ndesign: air voids (Va), voids in mineral aggregate (VMA), voids filled with asphalt (VFA), and dust proportion (DP) if the following data are also provided:

Diameter of gyratory specimen = 150 mm (≅ 6 in)

Maximum theoretical specific gravity (Gmm) for the loose mixture = 2.477

Bulk specific gravity of aggregate used in the mixture = 2.543

Bulk specific gravity of compacted specimen = 2.381

Specific gravity of asphalt binder = 1.00

Weight of asphalt mixture = 4744.6 g

% Passing No. 200 (75 μm) sieve in aggregate gradation used in the mixture = 4%

Ndesign = 109 gyrations

Asphalt binder content = 5.5%292

Solution:

The percentage of air voids (Va) in the asphalt mixture at Ndesign is determined using the following formula:

V a = 100 − % G mm- N design https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0051.tif"/>

% G mm- N design = 96.0 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0052.tif"/> from the compaction data analysis table (see Table 10.5).

V a = 100 − 96.0 = 4.0 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0053.tif"/>

The voids in mineral aggregate (VMA) in the asphalt mixture at Ndesign is calculated using the formula below:

VMA = 100 − ( % G mm- N design × G mm × P s 100 G sb ) https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0054.tif"/>

Where:

VMA = voids in mineral aggregate at Ndesign, percent by total volume of asphalt mixture

%Gmm-Ndesign = percentage of Gmm at Ndesign

Gmm = theoretical maximum specific gravity293

Ps = percentage of aggregate in asphalt mixture

Gsb = bulk specific gravity of aggregate

At Ndesign = 109 gyrations,

%Gmm-Ndesign = 96.0% from the compaction data analysis table given above.

P s = 100 − P b https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0055.tif"/>

Where:

Ps = percentage of aggregate in the asphalt mixture

Pb = percentage of asphalt binder in the asphalt mixture

P s = 100 − 5.5 = 94.5 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0056.tif"/>

G mm = 2.477 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0057.tif"/>

G sb = 2.543 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0058.tif"/>

VMA = 100 − ( 96.0 × 2.477 × 94.5 100 2.543 ) = 11.7 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0059.tif"/>

The voids filled with asphalt (VFA) in the asphalt mixture at Ndesign is calculated using the formula below:

VFA = 100 ( VMA − V a VMA ) https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0060.tif"/>

Where:

VFA = voids filled with asphalt at Ndesign, percent by volume of total voids in asphalt mixture

VMA = voids in mineral aggregate at Ndesign, percent by total volume of asphalt mixture

Va = air voids at Ndesign, percent by total volume of asphalt mixture

VFA = 100 ( 11.7 − 4.0 11.7 ) = 65.4 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0061.tif"/>

The dust proportion (DP) in the asphalt mixture is computed using the formula below:

D P = P 0.075 P be https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0062.tif"/>

Where:

P0.075 = percentage of material passing sieve No. 200 (0.075 mm)

Pbe = percentage of effective asphalt binder content in the asphalt mixture (%)294

P be = P b − ( P ba 100 ) P s https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0063.tif"/>

Where:

Pbe = effective asphalt binder content, percent by total weight of asphalt mixture

Pb = percentage of asphalt binder content, by total weight of asphalt mixture

Pba = absorbed asphalt content, percent by total weight of aggregate

Ps = percentage of aggregate, by total weight of asphalt mixture

And:

P ba = 100 ( G se − G sb G se G sb ) G b https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0064.tif"/>

Where:

Pba = absorbed asphalt content, percent by weight of aggregate

Gse = effective specific gravity of aggregate

Gsb = bulk specific gravity of aggregate

Gb = specific gravity of asphalt binder

The effective specific gravity of the aggregate (Gse) can be determined from the formula below:

G mm = P mm P s G se + P b G b https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0065.tif"/>

Where:

Pmm = percentage of loose mixture by total weight of mixture (100%)

Ps = percentage of aggregate in the asphalt mixture (by total weight of mixture)

Gse = effective specific gravity of the aggregate

Pb = percentage of asphalt binder in the asphalt mixture (by total weight of mixture)

Gb = specific gravity of asphalt binder

2.477 = 100 94.5 G se + 5.5 1.00 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0066.tif"/>

94.5 G se + 5.5 1.00 = 100 2.477 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0067.tif"/>

G se = 2.710 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0068.tif"/>

P ba = 100 ( G se − G sb G se G sb ) G b https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0069.tif"/> 295

P ba = 100 ( 2.710 − 2.543 2.710 × 2.543 ) 1.00 = 2.42 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0070.tif"/>

P be = P b − ( P ba 100 ) P s https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0071.tif"/>

P be = 5.5 − ( 2.42 100 ) 94.5 = 3.21 % https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0072.tif"/>

D P = P 0.075 P be https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0073.tif"/>

D P = 4 3.21 = 1.2 https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/TNF-CH010_eqn_0074.tif"/>

The MS Excel worksheet used to perform the computations of this problem is shown in Figure 10.4. 296

Plot the relationship between the number of gyrations (N) and the %Gmm during compaction for the three asphalt mixtures with the compaction data shown in Tables 10.6 through 10.11. The %Gmm is calculated from the given mixture data and the compaction data following the same procedure in Problem 10.1. Comment on the behavior of the three asphalt mixtures during compaction and compare the properties %Gmm @Ninitial, %Gmm at Ndesign, and %Gmm at Nmaximum with the Superpave criteria knowing that Ninitial = 8 gyrations, Ndesign = 109 gyrations, and Nmaximum = 174 gyrations, and the traffic level these mixtures are designed for is 15 million ESALs.297 298 299

Solution:

The number of gyrations, N is plotted against the %Gmm during compaction for the three asphalt mixtures as shown in Figure 10.5. The compaction properties of the three asphalt mixtures are shown in Table 10.12.

Superpave Gyratory Compaction Data of an Asphalt Mixture Number of Gyrations, N Height (mm) 1 135.2 2 132.8 3 131.1 4 130.0 5 128.8 6 128.0 7 127.2 8 126.6 9 125.9 10 125.5 20 122.2 30 120.5 40 119.3 50 118.4 60 117.8 70 117.3 80 116.8 90 116.5 100 116.2 109 115.9 110 115.9 120 115.7 130 115.5 140 115.3 150 115.2 160 115.0 170 114.9 174 114.9 Bulk Specific Gravity Data of a Compacted Asphalt Mixture Weight of Specimen in Air (g) 4795.6 Weight of Saturated-Surface Dry (SSD) Specimen (g) 4802.2 Weight of Specimen in Water (g) 2790.0 MS Excel worksheet image for the computations of Problem 10.1. https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/fig10_1_B.tif"/> Computations of the Compaction Properties of the Asphalt Mixture N Height (mm) Volume (cm3) Gmb Estimated CF Gmb Corrected % Gmm Va (%) N Height (mm) Volume (cm3) Gmb Estimated CF Gmb Corrected % Gmm Va (%) 1 135.2 2389.2 2.007 2.025 79.8 20.2 2 132.8 2346.8 2.043 2.062 81.3 18.7 3 131.1 2316.7 2.070 2.089 82.3 17.7 4 130.0 2297.3 2.088 2.106 83.0 17.0 5 128.8 2276.1 2.107 2.126 83.8 16.2 6 128.0 2261.9 2.120 2.139 84.3 15.7 7 127.2 2247.8 2.133 2.153 84.9 15.1 8 126.6 2237.2 2.144 2.163 85.3 14.7 9 125.9 2224.8 2.155 2.175 85.7 14.3 10 125.5 2217.8 2.162 2.182 86.0 14.0 11 125.1 2210.7 2.169 2.189 86.3 13.7 12 124.6 2201.9 2.178 2.198 86.6 13.4 13 124.3 2196.6 2.183 2.203 86.8 13.2 14 123.9 2189.5 2.190 2.210 87.1 12.9 15 123.6 2184.2 2.196 2.216 87.3 12.7 16 123.3 2178.9 2.201 2.221 87.5 12.5 17 123.0 2173.6 2.206 2.226 87.8 12.2 18 122.7 2168.3 2.212 2.232 88.0 12.0 19 122.5 2164.8 2.215 2.235 88.1 11.9 20 122.2 2159.5 2.221 2.241 88.3 11.7 21 122.0 2155.9 2.224 2.245 88.5 11.5 22 121.8 2152.4 2.228 2.248 88.6 11.4 23 121.6 2148.8 2.232 2.252 88.8 11.2 24 121.4 2145.3 2.235 2.256 88.9 11.1 25 121.3 2143.5 2.237 2.258 89.0 11.0 26 121.1 2140.0 2.241 2.261 89.1 10.9 27 120.9 2136.5 2.245 2.265 89.3 10.7 28 120.8 2134.7 2.246 2.267 89.4 10.6 29 120.6 2131.2 2.250 2.271 89.5 10.5 30 120.5 2129.4 2.252 2.273 89.6 10.4 31 120.3 2125.9 2.256 2.276 89.7 10.3 32 120.2 2124.1 2.258 2.278 89.8 10.2 33 120.1 2122.3 2.260 2.280 89.9 10.1 34 119.9 2118.8 2.263 2.284 90.0 10.0 35 119.8 2117.0 2.265 2.286 90.1 9.9 36 119.7 2115.3 2.267 2.288 90.2 9.8 37 119.6 2113.5 2.269 2.290 90.2 9.8 38 119.5 2111.7 2.271 2.292 90.3 9.7 39 119.4 2110.0 2.273 2.293 90.4 9.6 40 119.3 2108.2 2.275 2.295 90.5 9.5 41 119.2 2106.4 2.277 2.297 90.6 9.4 42 119.1 2104.7 2.279 2.299 90.6 9.4 43 119.0 2102.9 2.280 2.301 90.7 9.3 44 118.9 2101.1 2.282 2.303 90.8 9.2 45 118.8 2099.4 2.284 2.305 90.9 9.1 46 118.7 2097.6 2.286 2.307 90.9 9.1 47 118.7 2097.6 2.286 2.307 90.9 9.1 48 118.6 2095.8 2.288 2.309 91.0 9.0 49 118.5 2094.1 2.290 2.311 91.1 8.9 50 118.4 2092.3 2.292 2.313 91.2 8.8 51 118.4 2092.3 2.292 2.313 91.2 8.8 52 118.3 2090.5 2.294 2.315 91.2 8.8 53 118.2 2088.8 2.296 2.317 91.3 8.7 54 118.1 2087.0 2.298 2.319 91.4 8.6 55 118.1 2087.0 2.298 2.319 91.4 8.6 56 118.0 2085.2 2.300 2.321 91.5 8.5 57 118.0 2085.2 2.300 2.321 91.5 8.5 58 117.9 2083.5 2.302 2.323 91.5 8.5 59 117.8 2081.7 2.304 2.325 91.6 8.4 60 117.8 2081.7 2.304 2.325 91.6 8.4 61 117.7 2079.9 2.306 2.327 91.7 8.3 62 117.7 2079.9 2.306 2.327 91.7 8.3 63 117.6 2078.2 2.308 2.329 91.8 8.2 64 117.6 2078.2 2.308 2.329 91.8 8.2 65 117.5 2076.4 2.310 2.331 91.9 8.1 66 117.4 2074.6 2.312 2.333 91.9 8.1 67 117.4 2074.6 2.312 2.333 91.9 8.1 68 117.3 2072.9 2.314 2.334 92.0 8.0 69 117.3 2072.9 2.314 2.334 92.0 8.0 70 117.3 2072.9 2.314 2.334 92.0 8.0 71 117.2 2071.1 2.315 2.336 92.1 7.9 72 117.2 2071.1 2.315 2.336 92.1 7.9 73 117.1 2069.3 2.317 2.338 92.2 7.8 74 117.1 2069.3 2.317 2.338 92.2 7.8 75 117.0 2067.6 2.319 2.340 92.3 7.7 76 117.0 2067.6 2.319 2.340 92.3 7.7 77 116.9 2065.8 2.321 2.342 92.3 7.7 78 116.9 2065.8 2.321 2.342 92.3 7.7 79 116.9 2065.8 2.321 2.342 92.3 7.7 80 116.8 2064.0 2.323 2.344 92.4 7.6 81 116.8 2064.0 2.323 2.344 92.4 7.6 82 116.8 2064.0 2.323 2.344 92.4 7.6 83 116.7 2062.3 2.325 2.347 92.5 7.5 84 116.7 2062.3 2.325 2.347 92.5 7.5 85 116.6 2060.5 2.327 1.00907 2.349 92.6 7.4 86 116.6 2060.5 2.327 2.349 92.6 7.4 87 116.6 2060.5 2.327 2.349 92.6 7.4 88 116.5 2058.7 2.329 2.351 92.7 7.3 89 116.5 2058.7 2.329 2.351 92.7 7.3 90 116.5 2058.7 2.329 2.351 92.7 7.3 91 116.4 2057.0 2.331 2.353 92.7 7.3 92 116.4 2057.0 2.331 2.353 92.7 7.3 93 116.4 2057.0 2.331 2.353 92.7 7.3 94 116.3 2055.2 2.333 2.355 92.8 7.2 95 116.3 2055.2 2.333 2.355 92.8 7.2 96 116.3 2055.2 2.333 2.355 92.8 7.2 97 116.3 2055.2 2.333 2.355 92.8 7.2 98 116.2 2053.4 2.335 2.357 92.9 7.1 99 116.2 2053.4 2.335 2.357 92.9 7.1 100 116.2 2053.4 2.335 2.357 92.9 7.1 101 116.1 2051.7 2.337 2.359 93.0 7.0 102 116.1 2051.7 2.337 2.359 93.0 7.0 103 116.1 2051.7 2.337 2.359 93.0 7.0 104 116.1 2051.7 2.337 2.359 93.0 7.0 105 116.0 2049.9 2.339 2.361 93.0 7.0 106 116.0 2049.9 2.339 2.361 93.0 7.0 107 116.0 2049.9 2.339 2.361 93.0 7.0 108 116.0 2049.9 2.339 2.361 93.0 7.0 109 115.9 2048.1 2.341 2.363 93.1 6.9 110 115.9 2048.1 2.341 2.363 93.1 6.9 111 115.9 2048.1 2.341 2.363 93.1 6.9 112 115.9 2048.1 2.341 2.363 93.1 6.9 113 115.8 2046.4 2.343 2.365 93.2 6.8 114 115.8 2046.4 2.343 2.365 93.2 6.8 115 115.8 2046.4 2.343 2.365 93.2 6.8 116 115.8 2046.4 2.343 2.365 93.2 6.8 117 115.7 2044.6 2.346 2.367 93.3 6.7 118 115.7 2044.6 2.346 2.367 93.3 6.7 119 115.7 2044.6 2.346 2.367 93.3 6.7 120 115.7 2044.6 2.346 2.367 93.3 6.7 121 115.7 2044.6 2.346 2.367 93.3 6.7 122 115.6 2042.8 2.348 2.369 93.4 6.6 123 115.6 2042.8 2.348 2.369 93.4 6.6 124 115.6 2042.8 2.348 2.369 93.4 6.6 125 115.6 2042.8 2.348 2.369 93.4 6.6 126 115.6 2042.8 2.348 2.369 93.4 6.6 127 115.5 2041.1 2.350 2.371 93.5 6.5 128 115.5 2041.1 2.350 2.371 93.5 6.5 129 115.5 2041.1 2.350 2.371 93.5 6.5 130 115.5 2041.1 2.350 2.371 93.5 6.5 131 115.5 2041.1 2.350 2.371 93.5 6.5 132 115.4 2039.3 2.352 2.373 93.5 6.5 133 115.4 2039.3 2.352 2.373 93.5 6.5 134 115.4 2039.3 2.352 2.373 93.5 6.5 135 115.4 2039.3 2.352 2.373 93.5 6.5 136 115.4 2039.3 2.352 2.373 93.5 6.5 137 115.4 2039.3 2.352 2.373 93.5 6.5 138 115.3 2037.5 2.354 2.375 93.6 6.4 139 115.3 2037.5 2.354 2.375 93.6 6.4 140 115.3 2037.5 2.354 2.375 93.6 6.4 141 115.3 2037.5 2.354 2.375 93.6 6.4 142 115.3 2037.5 2.354 2.375 93.6 6.4 143 115.3 2037.5 2.354 2.375 93.6 6.4 144 115.2 2035.8 2.356 2.377 93.7 6.3 145 115.2 2035.8 2.356 2.377 93.7 6.3 146 115.2 2035.8 2.356 2.377 93.7 6.3 147 115.2 2035.8 2.356 2.377 93.7 6.3 148 115.2 2035.8 2.356 2.377 93.7 6.3 149 115.2 2035.8 2.356 2.377 93.7 6.3 150 115.2 2035.8 2.356 2.377 93.7 6.3 151 115.1 2034.0 2.358 2.379 93.8 6.2 152 115.1 2034.0 2.358 2.379 93.8 6.2 153 115.1 2034.0 2.358 2.379 93.8 6.2 154 115.1 2034.0 2.358 2.379 93.8 6.2 155 115.1 2034.0 2.358 2.379 93.8 6.2 156 115.1 2034.0 2.358 2.379 93.8 6.2 157 115.1 2034.0 2.358 2.379 93.8 6.2 158 115.0 2032.2 2.360 2.381 93.9 6.1 159 115.0 2032.2 2.360 2.381 93.9 6.1 160 115.0 2032.2 2.360 2.381 93.9 6.1 161 115.0 2032.2 2.360 2.381 93.9 6.1 162 115.0 2032.2 2.360 2.381 93.9 6.1 163 115.0 2032.2 2.360 2.381 93.9 6.1 164 115.0 2032.2 2.360 2.381 93.9 6.1 165 115.0 2032.2 2.360 2.381 93.9 6.1 166 114.9 2030.5 2.362 2.383 93.9 6.1 167 114.9 2030.5 2.362 2.383 93.9 6.1 168 114.9 2030.5 2.362 2.383 93.9 6.1 169 114.9 2030.5 2.362 2.383 93.9 6.1 170 114.9 2030.5 2.362 2.383 93.9 6.1 171 114.9 2030.5 2.362 2.383 93.9 6.1 172 114.9 2030.5 2.362 2.383 93.9 6.1 173 114.9 2030.5 2.362 2.383 93.9 6.1 174 114.9 203 0.5 2.362 2.383 93.9 6.1 Number of gyrations versus %G<sub>mm</sub> for the asphalt mixture. https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/fig10_2_B.tif"/> Superpave Gyratory Compaction Data for an Asphalt Mixture N Height (mm) 1 132.8 2 130.4 3 128.6 4 127.3 5 126.2 6 125.3 7 124.5 8 123.8 9 123.2 10 122.7 20 119.5 30 117.9 40 116.9 50 116.2 60 115.7 70 115.3 80 115.1 90 114.8 100 114.7 109 114.5 110 114.5 120 114.4 130 114.3 140 114.2 150 114.2 160 114.1 170 114.1 174 114.0 MS Excel worksheet image for the computations of Problem 10.3. https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/fig10_3_B.tif"/> Superpave Gyratory Compaction Data and Compaction Properties for an Asphalt Mixture N Height (mm) Volume (cm3) Gmb Estimated CF Gmb Corrected % Gmm Va (%) 1 129.1 2281.4 2.080 2.091 84.4 15.6 8 120.1 2122.3 2.236 2.248 90.8 9.2 10 119.1 2104.7 2.254 2.267 91.5 8.5 20 116.3 2055.2 2.309 2.322 93.7 6.3 30 115.2 2035.8 2.331 2.344 94.6 5.4 40 114.7 2026.9 2.341 2.354 95.0 5.0 50 114.3 2019.8 2.349 2.362 95.4 4.6 60 114.1 2016.3 2.353 2.366 95.5 4.5 70 114.0 2014.5 2.355 2.368 95.6 4.4 80 113.9 2012.8 2.357 2.371 95.7 4.3 90 113.8 2011.0 2.359 1.00565 2.373 95.8 4.2 100 113.7 2009.2 2.361 2.375 95.9 4.1 109 113.6 2007.5 2.363 2.377 96.0 4.0 110 113.6 2007.5 2.363 2.377 96.0 4.0 120 113.6 2007.5 2.363 2.377 96.0 4.0 130 113.6 2007.5 2.363 2.377 96.0 4.0 140 113.5 2005.7 2.366 2.379 96.0 4.0 150 113.5 2005.7 2.366 2.379 96.0 4.0 160 113.5 2005.7 2.366 2.379 96.0 4.0 170 113.4 2003.9 2.368 2.381 96.1 3.9 174 113.4 2003.9 2.368 2.381 96.1 3.9 A screen image of the MS Excel worksheet used for the computations of Problem 10.4. https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/fig10_4_B.tif"/> Data for Mixture #1 D (mm) γw (g/cm3) Gmm Gsb Weight of Mixture (g) Gmb Measured 150.0 1.000 2.467 2.575 4810.0 2.361 Compaction Properties for Asphalt Mixture #1 N Height (mm) Volume (cm3) Gmb Estimated CF Gmb Corrected % Gmm Va (%) 1 137.0 2421.0 1.987 1.00720 2.001 81.1 18.9 2 134.5 2376.8 2.024 2.038 82.6 17.4 3 132.6 2343.2 2.053 2.067 83.8 16.2 4 131.1 2316.7 2.076 2.091 84.8 15.2 5 129.9 2295.5 2.095 2.110 85.5 14.5 6 128.8 2276.1 2.113 2.128 86.3 13.7 7 128.0 2261.9 2.126 2.142 86.8 13.2 8 127.1 2246.0 2.142 2.157 87.4 12.6 9 126.5 2235.4 2.152 2.167 87.8 12.2 10 125.8 2223.1 2.164 2.179 88.3 11.7 20 122.1 2157.7 2.229 2.245 91.0 9.0 30 120.3 2125.9 2.263 2.279 92.4 7.6 40 119.2 2106.4 2.283 2.300 93.2 6.8 50 118.5 2094.1 2.297 2.313 93.8 6.2 60 118.0 2085.2 2.307 2.323 94.2 5.8 70 117.6 2078.2 2.315 2.331 94.5 5.5 80 117.4 2074.6 2.318 2.335 94.7 5.3 90 117.1 2069.3 2.324 2.341 94.9 5.1 100 116.9 2065.8 2.328 2.345 95.1 4.9 109 116.8 2064.0 2.330 2.347 95.1 4.9 110 116.8 2064.0 2.330 2.347 95.1 4.9 120 116.6 2060.5 2.334 2.351 95.3 4.7 130 116.5 2058.7 2.336 2.353 95.4 4.6 140 116.4 2057.0 2.338 2.355 95.5 4.5 150 116.3 2055.2 2.340 2.357 95.6 4.4 160 116.2 2053.4 2.342 2.359 95.6 4.4 170 116.2 2053.4 2.342 2.359 95.6 4.4 174 116.1 2051.7 2.344 2.361 95.7 4.3 Data for Asphalt Mixture #2 D (mm) γw (g/cm3) Gmm Gsb Weight of Mixture (g) Gmb Measured 150.0 1.000 2.449 2.575 4841.0 2.355 Compaction Properties for Asphalt Mixture #2 N Height (mm) Volume (cm3) Gmb Estimated CF Gmb Corrected % Gmm Va (%) 1 134.5 2376.8 2.037 1.00476 2.046 83.6 16.4 2 132.0 2332.6 2.075 2.085 85.1 14.9 3 130.1 2299.1 2.106 2.116 86.4 13.6 4 128.5 2270.8 2.132 2.142 87.5 12.5 5 127.2 2247.8 2.154 2.164 88.4 11.6 6 126.3 2231.9 2.169 2.179 89.0 11.0 7 125.5 2217.8 2.183 2.193 89.6 10.4 8 124.6 2201.9 2.199 2.209 90.2 9.8 9 124.0 2191.3 2.209 2.220 90.6 9.4 10 123.4 2180.7 2.220 2.231 91.1 8.9 20 120.3 2125.9 2.277 2.288 93.4 6.6 30 119.0 2102.9 2.302 2.313 94.4 5.6 40 118.3 2090.5 2.316 2.327 95.0 5.0 50 117.9 2083.5 2.324 2.335 95.3 4.7 60 117.7 2079.9 2.327 2.339 95.5 4.5 70 117.5 2076.4 2.331 2.343 95.7 4.3 80 117.4 2074.6 2.333 2.345 95.7 4.3 90 117.3 2072.9 2.335 2.347 95.8 4.2 100 117.2 2071.1 2.337 2.349 95.9 4.1 109 117.2 2071.1 2.337 2.349 95.9 4.1 110 117.2 2071.1 2.337 2.349 95.9 4.1 120 117.1 2069.3 2.339 2.351 96.0 4.0 130 117.1 2069.3 2.339 2.351 96.0 4.0 140 117.0 2067.6 2.341 2.353 96.1 3.9 150 117.0 2067.6 2.341 2.353 96.1 3.9 160 116.9 2065.8 2.343 2.355 96.1 3.9 170 116.9 2065.8 2.343 2.355 96.1 3.9 174 116.9 2065.8 2.343 2.355 96.1 3.9 Data for Asphalt Mixture #3 D (mm) γw (g/cm3) Gmm Gsb Weight of Mixture (g) Gmb Measured 150.0 1.000 2.439 2.575 4860.0 2.341 Compaction Properties for Asphalt Mixture #3 N Height (mm) Volume (cm3) Gmb Estimated CF Gmb Corrected % Gmm Va (%) 1 129.8 2293.8 2.119 1.00360 2.126 87.2 12.8 2 127.9 2260.2 2.150 2.158 88.5 11.5 3 126.2 2230.1 2.179 2.187 89.7 10.3 4 124.9 2207.2 2.202 2.210 90.6 9.4 5 123.8 2187.7 2.221 2.229 91.4 8.6 6 123.1 2175.4 2.234 2.242 91.9 8.1 7 122.3 2161.2 2.249 2.257 92.5 7.5 8 121.9 2154.2 2.256 2.264 92.8 7.2 9 121.5 2147.1 2.264 2.272 93.1 6.9 10 121.2 2141.8 2.269 2.277 93.4 6.6 20 119.4 2110.0 2.303 2.312 94.8 5.2 30 118.8 2099.4 2.315 2.323 95.3 4.7 40 118.5 2094.1 2.321 2.329 95.5 4.5 50 118.3 2090.5 2.325 2.333 95.7 4.3 60 118.2 2088.8 2.327 2.335 95.7 4.3 70 118.2 2088.8 2.327 2.335 95.7 4.3 80 118.1 2087.0 2.329 2.337 95.8 4.2 90 118.1 2087.0 2.329 2.337 95.8 4.2 100 118.0 2085.2 2.331 2.339 95.9 4.1 109 118.0 2085.2 2.331 2.339 95.9 4.1 110 118.0 2085.2 2.331 2.339 95.9 4.1 120 118.0 2085.2 2.331 2.339 95.9 4.1 130 117.9 2083.5 2.333 2.341 96.0 4.0 140 117.9 2083.5 2.333 2.341 96.0 4.0 150 117.9 2083.5 2.333 2.341 96.0 4.0 160 117.9 2083.5 2.333 2.341 96.0 4.0 170 117.9 2083.5 2.333 2.341 96.0 4.0 174 117.9 2083.5 2.333 2.341 96.0 4.0 Number of gyrations versus %G<sub>mm</sub> for the three asphalt mixtures. https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429054297/5885f92e-b0a3-419d-837a-bad4e02024b0/content/fig10_5_B.tif"/> Compaction Properties for the Three Mixtures Versus Superpave Criteria Asphalt Mixture # %Gmm at Ninitial %Gmm at Ndesign %Gmm at Nmaximum 1 87.4 95.1 95.7 2 90.2 95.9 96.1 3 92.8 95.9 96.0 Superpave Criteria* ≤ 89.0 = 96.0 ≤ 98.0 Pass/Fail #1 Passes; #2 and #3 Fail All Fail All Pass Conclusion None of the three mixtures passes the Superpave criteria. *Source for Superpave Criteria: Superpave Mix Design, Asphalt Institute Superpave Series No.2 (SP-2), 2001.