ABSTRACT

The linear Higher order Input‐State‐Output (HISO) (dynamical, control) systems have not been studied so far. Their mathematical models contain the α‐th order linear differential state vector equation (5.1) and the linear algebraic output vector equation (5.2), A ( α ) R α ( t ) = D ( μ ) D μ ( t ) + B ( μ ) U μ ( t ) = H ( μ ) I μ ( t ) , ∀ t ∈ T 0 , A ( α ) ∈ ℜ ρ × ( α + 1 ) ρ , R α ∈ ℜ ( α + 1 ) ρ , D ( μ ) ∈ ℜ ρ × ( μ + 1 ) d , B ( μ ) ∈ ℜ ρ × ( μ + 1 ) r , H ( μ ) = [ D ( μ ) ⋮ B ( μ ) ] ∈ ℜ ρ × ( μ + 1 ) ( d + r ) , I μ = [ ( D μ ) T ⋮ ( U μ ) T ] T ∈ ℜ ( μ + 1 ) ( d + r ) , $$ \begin{gathered} A^{{(\alpha )}} {\text{R}}^{\alpha } (t) = D^{{(\mu )}} {\text{D}}^{\mu } (t) + B^{{(\mu )}} {\text{U}}^{\mu } (t) = H^{{(\mu )}} {\text{I}}^{\mu } (t)~,~\forall t \in {\mathfrak{T}}_{0} , \hfill \\ A^{{(\alpha )}} \in {\Re }^{{\rho \times (\alpha + 1)\rho }} ,{\text{R}}^{\alpha } \in {\Re }^{{(\alpha + 1)\rho }} ,D^{{(\mu )}} \in {\Re }^{{\rho \times (\mu + 1)d}} ,B^{{(\mu )}} \in {\Re }^{{\rho \times (\mu + 1)r}} , \hfill \\ H^{{(\mu )}} = [D^{{(\mu )}} \vdots B^{{(\mu )}} ] \in {\Re }^{{\rho \times (\mu + 1)(d + r)}} ,\,{\text{I}}^{\mu } = [({\text{D}}^{\mu } )^{T} \vdots ~({\text{U}}^{\mu } )^{T} ]^{T} \in {\Re }^{{(\mu + 1)(d + r)}} , \hfill \\ \end{gathered} $$ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429432149/418cc552-67ff-4e7e-a408-87b73829f6e7/content/math5_1.tif"/> Y ( t ) = R ( α ) R α ( t ) + V D ( t ) + U U ( t ) = R ( α ) R α ( t ) + Q I ( t ) , ∀ t ∈ T 0 , V ∈ ℜ N × d , U ∈ ℜ Nxr , Q = [ V ⋮ U ] ∈ ℜ N × ( d + r ) , R ( α ) = [ R 0 ⋮ R 1 ⋮ ⋯ ⋮ R α - 1 ⋮ O N , ρ ] , R α = O N , ρ . $$ \begin{gathered} {\text{Y}}(t) = R^{{(\alpha )}} {\text{R}}^{\alpha } (t) + V{\text{D}}(t) + U{\text{U}}(t) = R^{{(\alpha )}} {\text{R}}^{\alpha } (t) + Q{\text{I}}(t),\,\,\forall t \in {\mathfrak{T}}_{0} , \hfill \\ \,\,\,\,\,\,\,\,\,\,\,V \in {\Re }^{{N \times d}} ,~U \in {\Re }^{{Nxr}} ,~Q = ~[V \vdots U]~ \in {\Re }^{{N \times (d + r)}} , \hfill \\ \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,R^{{(\alpha )}} = ~[R_{0} \vdots R_{1} \vdots \cdots \vdots R_{{\alpha - 1}} \vdots O_{{N,\rho }} ]~,~R_{\alpha } = O_{{N,\rho }} . \hfill \\ \end{gathered} $$ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429432149/418cc552-67ff-4e7e-a408-87b73829f6e7/content/math5_2.tif"/>