Skip to main content
Taylor & Francis Group Logo
    Advanced Search

    Click here to search products using title name,author name and keywords.

    • Login
    • Hi, User  
      • Your Account
      • Logout
      Advanced Search

      Click here to search products using title name,author name and keywords.

      Breadcrumbs Section. Click here to navigate to respective pages.

      Chapter

      Mathematical Background
      loading

      Chapter

      Mathematical Background

      DOI link for Mathematical Background

      Mathematical Background book

      Mathematical Background

      DOI link for Mathematical Background

      Mathematical Background book

      ByAlfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone
      BookHandbook of Applied Cryptography

      Click here to navigate to parent product.

      Edition 1st Edition
      First Published 1997
      Imprint CRC Press
      Pages 38
      eBook ISBN 9780429466335
      Share
      Share

      ABSTRACT

      This chapter is a collection of basic material on probability theory, information theory, complexity theory, number theory, abstract algebra, and finite fields that will be used throughout this book. Further background and proofs of the facts presented here can be found in the references given in §2.7. The following standard notation will be used throughout:

      ℤ denotes the set of integers; that is, the set {…, −2, −1, 0, 1, 2, …}.

      ℚ denotes the set of rational numbers; that is, the set { a b | a , b ∈ ℤ , b ≠ 0 } https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429466335/81e205fb-b60a-4276-b51a-603b35ce55a6/content/eq186.tif"/> .

      ℝ denotes the set of real numbers.

      π is the mathematical constant; π ≈ 3.14159.

      e is the base of the natural logarithm; e ≈ 2.71828.

      [a, b] denotes the integers x satisfying a ≤ x ≤ b.

      ⌊x⌋ is the largest integer less than or equal to x. For example, ⌊5.2⌋ = 5 and ⌊−5.2⌋ = −6.

      ⌈x⌉ is the smallest integer greater than or equal to x. For example, ⌈5.2⌉ = 6 and ⌈−5.2⌈ = −5.

      If A is a finite set, then |A| denotes the number of elements in A, called the cardinality of A.

      a ∈ A means that element a is a member of the set A.

      A ⊆ B means that A is a subset of B.

      A ⊂ B means that A is a proper subset of B; that is A ⊆ B and A ≠ B.

      The intersection of sets A and B is the set A ⋂ B = {x | x ∈ A and x ∈ B}.

      The union of sets A and B is the set A ⋃ B = {x | x ∈ A or x ∈ B}.

      The difference of sets A and B is the set A − B = {x | x ∈ A and x ∉ B}.

      The Cartesian product of sets A and B is the set A × B = {(a, b) | a ∈ A and b ∈ B}. For example, {a 1, a 2} × {b 1, b 2, b 3} = {(a 1, b 1), (a 1, b 2), (a 1, b 3), (a 2, b 1), (a 2, b 2), (a 2, b 3)}.50

      A function or mapping f : A → B is a rule which assigns to each element a in A precisely one element b in B. If a ∈ A is mapped to b ∈ B then b is called the image of a, a is called a preimage of b, and this is written f(a) = b. The set A is called the domain of f, and the set B is called the codomain of f.

      A function f : A → B is 1 − 1 (one-to-one) or injective if each element in B is the image of at most one element in A. Hence f(a 1) = f(a 2) implies a 1 = a 2.

      A function f : A → B is onto or surjective if each b ∈ B is the image of at least one a ∈ A.

      A function f : A → B is a bijection if it is both one-to-one and onto. If f is a bijection between finite sets A and B, then |A| = |B|. If f is a bijection between a set A and itself, then f is called a permutation on A.

      ln x is the natural logarithm of x; that is, the logarithm of x to the base e.

      lg x is the logarithm of x to the base 2.

      exp(x) is the exponential function ex .

      ∑ i = 1 n a i https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429466335/81e205fb-b60a-4276-b51a-603b35ce55a6/content/eq187.tif"/> denotes the sum a 1 + a 2 + · · · + an .

      ∏ i = 1 n a i https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9780429466335/81e205fb-b60a-4276-b51a-603b35ce55a6/content/eq188.tif"/> denotes the product a 1 · a 2 ….. an .

      For a positive integer n, the factorial function is n! = n(n − 1) (n − 2) · · · 1. By convention, 0! = 1.

      T&F logoTaylor & Francis Group logo
      • Policies
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
        • Privacy Policy
        • Terms & Conditions
        • Cookie Policy
      • Journals
        • Taylor & Francis Online
        • CogentOA
        • Taylor & Francis Online
        • CogentOA
      • Corporate
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
        • Taylor & Francis Group
      • Help & Contact
        • Students/Researchers
        • Librarians/Institutions
        • Students/Researchers
        • Librarians/Institutions
      • Connect with us

      Connect with us

      Registered in England & Wales No. 3099067
      5 Howick Place | London | SW1P 1WG © 2022 Informa UK Limited