Human dependence on plants for food, shelter, flavors, fragrance, colors, and health is prehistoric. Recent years have witnessed an unprecedented preference for natural herbals in health, nutraceuticals, and cosmetic sectors, and the gap between demand and supply is fast widening. Since the majority of medicinal and aromatic plants are still collected from the wild, several natural populations are being threatened or extinction. This changing scenario demands two immediate measures: (1) bringing more and more medicinal and aromatic plants under organized cultivation/domestication and (2) upgrading conventional plant improvement techniques with modern tools of plant biotechnology (Galili 2002; Gomez-Galera et al. 2007; Kole 2007). The human quest to improve the yield and quality of bioresources dates back to more than 10,000 years, with simple selection of traits quantifiable at the naked-eye level (Jauhar 2006). Such empirical selective breeding approaches then moved toward channelization of useful genes through conscious hybridization to induction of novel characters through deliberate mutation and polyploid breeding. With the advent of cell and tissue culture approaches coupled with tools of genetic engineering, the state of the art has reached to a level where crops are being designed by borrowing genes of interest from across the taxonomic boundaries, spread over plant, animal and microbial kingdoms (Vasil 2005; Datta 2007; Jullien 2007). Flava-savor tomato, golden rice and Bt-cotton are just a few examples of the tremendous advantages that these tools of plant biotechnology can offer if properly amalgamated with traditional breeding approaches.