ABSTRACT

Nanotechnology has been one of the most important impetuses that accelerated the development of biomaterials, especially third-generation biomaterials, focusing on stimulating speci c cellular responses at a molecular level [1]. Layer-by-layer (LbL) self-assembly technique is one of the nanotechnologies that has advanced in the past 10 years. LbL has demonstrated broad applications in electronics, drug delivery, implant coating, and tissue engineering. We cover a few reviews based on LbL self-assembly, including principles [2-4], self-assembled thin lms [4-6], and microencapsulation [5,7-9]. The principles of LbL self-assembly will be introduced and applications in biomaterials will be discussed later in this chapter. Generally, to build biomaterials at nanoscale through LbL self-assembly, two methods can be used: assemble ultrathin lms in a bottom-up way or encapsulate nanomaterials on micro/nanotemplates. To characterize the assembly process and the self-assembled structures, a few methods such as quartz crystal microbalance technique (QCM), x-ray, and neutron re ectivity measurements can be used.