ABSTRACT

In this chapter, a protocol-based finite-horizon H and l 2 -l estimation approach is put forward to solve the state estimation problem for discrete-time memristive neural networks (MNNs) subject to time-varying delays and energy-bounded disturbances. The Round-Robin protocol is utilized to mitigate unnecessary network congestion occurring in the sensor-to-estimator communication channel. For the delayed MNNs, our aim is to devise an estimator that not only ensures a prescribed disturbance attenuation level over a finite time-horizon, but also keeps the peak value of the estimation error within a given range. By resorting to the Lyapunov-Krasovskii functional method, the delay-dependent criteria are formulated that guarantee the existence of the desired estimator. Subsequently, the estimator gains are obtained via figuring out a bank of convex optimization problems. The validity of our estimator is finally shown via a numerical example.