ABSTRACT

The chapter starts with the phase coordinates model (with inductances dependent on rotor position) and then the parameter equivalence with their dq model is derived, and then the transients are treated only by the dq-model of SM.

A plethora of issues such as phase inductances versus rotor position, phase parameter equivalence with dq model in rotor coordinates, structural diagram, p.u. dq0 model (numerical example), balanced steady state via the dq0 model, Laplace parameters for electromagnetic (constant speed, fast) transients: L d ' https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003216018/08e70f95-1e96-463a-b736-d28d7b03dc25/content/eqni3_3.jpg"/> , L d ' ' https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003216018/08e70f95-1e96-463a-b736-d28d7b03dc25/content/eqni3_4.jpg"/> , L q ' ' https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003216018/08e70f95-1e96-463a-b736-d28d7b03dc25/content/eqni3_5.jpg"/> , T d ' https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003216018/08e70f95-1e96-463a-b736-d28d7b03dc25/content/eqni3_6.jpg"/> , T d ' ' https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003216018/08e70f95-1e96-463a-b736-d28d7b03dc25/content/eqni3_7.jpg"/> , T d 0 ' https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003216018/08e70f95-1e96-463a-b736-d28d7b03dc25/content/eqni3_8.jpg"/> , T d 0 ' ' https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003216018/08e70f95-1e96-463a-b736-d28d7b03dc25/content/eqni3_9.jpg"/> , T q ' ' https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003216018/08e70f95-1e96-463a-b736-d28d7b03dc25/content/eqni3_10.jpg"/> , T q 0 ' ' https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003216018/08e70f95-1e96-463a-b736-d28d7b03dc25/content/eqni3_11.jpg"/> (voltage build up, sudden three-phase short circuit with numerical examples), asynchronous running via dq model, d.c. field current (or PM)-induced asynchronous stator winding loss formulae, reduced dq models for electromechanical transients, small and large deviation electromechanical transients, asynchronous starting and self-synchronization transients by the dq model, line-to-line—to neutral faults by dq model, transients at controlled flux and sinusoidal current in PMSMs (constant Ψd with numerical examples, constant stator flux transients at unity power factor with a numerical example), vector control at constant stator flux and cosφ1=1, transients for controlled flux and rectangular current.

The model of brushless d.c.—PM motor transients, d.c.-excited cage rotor SM model for rectangular current control (current source inverter fed) switched reluctance machine modeling for transients, split-phase cage rotor small synchronous motor transients (dq model), standstill testing for SM parameters estimation (Lab.)—current decay and, respective, standstill frequency tests- linear synchronous motor transients modeling, summary and 10 solved problems (with solution hints) constitute the contents of the chapter (29 figures and 218 equations).