ABSTRACT

The microcanonical ensemble verifies the conditions of application of the fundamental postulate, valid for isolated systems. As such, it has allowed the development of a statistical approach (Chapter 2) and the recovery of thermodynamics by offering a microscopic interpretation of entropy in terms of number of accessible microstates (Chapter 3). Conceptually simple, microcanonical conditions are ideal conditions that are difficult to implement in practice: a system cannot be perfectly isolated and energy is a delicate quantity to control experimentally. In general, natural or laboratory systems are in contact with an external medium imposing thermodynamic conditions (temperature, pressure), such as the Earth’s atmosphere or a thermostat whose temperature is chosen by an experimentalist.

In this chapter, starting from the microcanonical ensemble ( https://www.w3.org/1998/Math/MathML"> N https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_7.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> , https://www.w3.org/1998/Math/MathML"> V https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_8.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> , https://www.w3.org/1998/Math/MathML"> E https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_9.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> ), new statistical ensembles corresponding to different sets of external parameters will be constructed: first the canonical ensemble ( https://www.w3.org/1998/Math/MathML"> N https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_10.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> , https://www.w3.org/1998/Math/MathML"> V https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_11.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> , https://www.w3.org/1998/Math/MathML"> T https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_12.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> ), which describes a closed system of https://www.w3.org/1998/Math/MathML"> N https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_13.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> particles, of constant volume https://www.w3.org/1998/Math/MathML"> V https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_14.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> , in equilibrium with a thermostat at temperature https://www.w3.org/1998/Math/MathML"> T https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_15.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> (Section 4.1), then the grand canonical ensemble ( https://www.w3.org/1998/Math/MathML"> μ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_16.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> , https://www.w3.org/1998/Math/MathML"> V https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_17.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> , https://www.w3.org/1998/Math/MathML"> T https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_18.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> ), associated with an open system of fixed volume https://www.w3.org/1998/Math/MathML"> V https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_19.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> exchanging particles and energy with a reservoir imposing the temperature https://www.w3.org/1998/Math/MathML"> T https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_20.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> and the chemical potential https://www.w3.org/1998/Math/MathML"> μ https://s3-euw1-ap-pe-df-pch-content-public-p.s3.eu-west-1.amazonaws.com/9781003272427/5ca4d37a-9786-43a3-8b38-8fa9eb3d1a19/content/math_21.tif" xmlns:xlink="https://www.w3.org/1999/xlink"/> (Section 4.2). In each of these statistical ensembles, the probability distribution function of the system microstates will be determined and the expressions of thermodynamic quantities will be deduced. As it will be seen, the different procedures and calculations are much simpler than in the microcanonical ensemble. Finally, it will be shown that for any external parameters, statistical ensembles are in general equivalent for macroscopic systems and can be studied in the unifying framework of information theory (Section 4.3).