ABSTRACT

T HE FUNDAMENTAL KNOWLEDGE BEHIND MODERN INformation technology, the most visible side of science which permeates

almost every aspect of our daily lives, rests on two pillars: information science and quantum mechanics. Knowing how to efficiently communicate and process information and understanding the physical phenomena and material properties that are essential to building functional devices have provided us with unprecedented convenience and mastery over nature, possibly with the price of becoming the slaves of our computers and gadgets. Nevertheless, information science and quantum mechanics enter the backbone of current technologies as distinct and independent fields. Therefore, one is naturally tempted to ask several questions. Is there land between these two realms? If yes, what can grow out of that land? In particular, can information theory tell us something relevant about the foundations of quantum mechanics? On the other hand, can one formulate a quantum information science and in what sense would this be different from the classical version? In this chapter we introduce several basic concepts that will allow us to better understand the implications of these questions and grasp the essential ideas behind the answers formulated so far. Discussing these fundamental concepts will also shed light on the role of topological quantum matter in the economy of quantum computation. Here we focus on the key ideas that were launched into the arena by classical information theory and classical computation science. The metamorphosis of

these ideas after the encounter with quantum mechanics will be discussed in the final three chapters of this book.