ABSTRACT

Total scattering cross sections suggested by Christophorou and Olthoff (2004), on the basis of measurements of Gulley et al(1998) and Cooper et al(1999) are shown in Table 122 and Figure 121 The essential features of the total scattering cross section are

1 The cross section increases toward zero energy, attributed to electron attachmentLow-energy attachment takes place most probably through p-wave attachment, unlike s-wave attachment in other species such as SF6 This explains the relatively lower cross section at low energies for Cl2 (Gulley et al 1998)

121 Selected References for Data 95 122 Total Scattering Cross Section 95 123 Elastic Scattering Cross Section 96 124 Rotational Cross Section 96 125 Vibrational Excitation Cross Section 98 126 Ionization Cross Section 98 127 Attachment Processes 99 128 Attachment Cross Section 99 129 Attachment Rate Constants 100 1210 Electron Transport 100 1211 Ionization and Attachment Coefficients 100 1212 Addendum 102

12121 Total Scattering Cross Section 102 12122 Ionization Cross Section 102

References 103

TABLE 12.1 Selected References

Parameter Range: eV, (Td) Reference

Qi 12-900 Basner and Becker (2004)

Review 0-1000 Christophorou and Olthoff (2004)

QT 08-600 Makochekanwa et al. (2003) Qa 0-9 Feketeova et al. (2003) Qa 0-02 Barsotti et al. (2002) QT 03-230 Cooper et al. (1999) QT 002-95 Gulley et al. (1998)

Qrot 001-1000 Kutz and Meyer (1995)

Qrot 10-200 Gote and Erhardt (1995) Qa 0-10 McCorkle et al. (1986) Qi 135-102 Stevie and Vasile (1981) Qi, Qa 0-100 Kurepa and Belic´ (1978) Qa 0-8 Tam and Wong (1978) ka (350) Sides et al. (1976)

α/N, η/N (210-450) Božin et al. (1967)

Note:Qa = attachment cross section; Qi: = ionization cross section; Qrot = rotational excitation; QT: = total cross section; α/N = densityreduced ionization coefficient; η/N = density-reduced attachment coefficient Bold font indicates experimental study

3 A strong peak at ~7 e

gases (see Table 122)

and Olthoff (2004) are shown in Table 123 and included in Figure 121

Rotational cross section is visualized as comprising of two com ponents: rotational scattering and rotational excitation Rotational scattering designates j = 0 → 0 and it is an elastic processRotational excitation designates j = 0 → 2, 4, 6, and it is an inelastic process (Kutz and Meyer, 1995)The essential features of rotational scattering are (Cooper et al, 1999)

1 Except for electron energies near the minimum (~04 eV), rotational scattering is the largest contribution of the total scattering cross section for energy up to ~20 eV

2 Near the peak (~8 eV) rotational excitation makes a significant contribution to the total scattering cross section

Gote and Erhardt (1995) have measured the differential rotational excitation cross sections for electrons impacting with energy from 2 to 200 eVThese results are shown in TABLE 12.2

Total Scattering Cross Sections for Cl2 Energy (eV) QT (10−20 m2) Energy (eV) QT (10−20 m2)

002 400 080 655

003 352 090 736

004 268 100 797

005 170 120 906

006 107 150 111

007 736 200 139

008 850 250 160

009 106 300 179

010 968 35 199

011 926 40 219

012 906 45 242

013 976 50 268

014 989 60 345

015 890 70 412

017 719 80 428

020 509 90 410

022 444 100 403

025 400 120 397

030 375 140 386

035 370 160 367

040 380 180 351

050 432 200 330

060 500 220 315

070 583 230 310

Source:Adapted from Christophorou, LGand JKOlthoff, Fundamental Electron Interactions with Plasma Processing Gases, Kluwer Academic/Plenum Publishers, New York, NY, 2004

Note:See Table 1211 also

TABLE 12.3 Elastic Scattering Cross Sections for Cl2 Energy (eV) Qel (10−20 m2) Energy (eV) Qel (10−20 m2)

020 150 70 271

022 164 80 288

025 182 90 302

030 211 100 313

035 238 120 327

040 266 140 331

050 330 160 329

060 410 180 321

070 498 20 309

080 599 22 295

090 689 23 288

10 777 25 273

12 934 30 240

15 114 40 194

20 146 50 161

25 169 60 136

30 186 70 116

35 199 80 101

40 211 90 887

45 221 100 799

50 232 150 631

60 252 200 616

Source:Adapted from Christophorou, LGand JKOlthoff, Fundamental Electron Interactions with Plasma Processing Gases, Kluwer Academic/Plenum Publishers, New York, NY, 2004

Cl2

Total scattering Elastic scattering

1 Energy (eV)

0.10.01 1

Cr os

ss ec

tio n

(1 0-

2 )

30 eV

Rotational excitation

Scattering angle (°) 0

0 10

20 30

20 eV

16012080400 0

10 eV

Differential scattering

Di ffe

re nt

ial cr

os ss

ec tio

n (1

m 2 /s

r)

2 eV 5 eV Cl2

400 0

Excitation SCl2 in Units of 10−20 m2/sr

Energy (eV)

Angle (°) 2 5 10 20 30 50 70 100 150 200

10 1591 5819 21283 31605 31838 28722 22238 15695 14123 12915

20 1129 4584 14387 19320 15896 8607 5434 3498 2397 2518

30 0856 3349 7491 9406 5860 2409 1457 0912 0778 0831

40 1017 2984 4615 3970 2263 1012 0592 0415 0345 0357

50 1318 2542 1740 1834 1180 0505 0262 0188 0185 0230

60 1528 2023 1411 1316 0687 0196 0131 0133 0154 0190

70 1615 1720 1082 0961 0406 0158 0152 0148 0154 0132

80 1577 1506 0963 0754 0431 0304 0219 0201 0126 0094

90 1453 1381 0843 0799 0621 0440 0295 0192 0086 0064

100 1291 1177 0858 0886 0712 0485 0320 0148 0054 0035

110 1029 1115 0874 0893 0593 0435 0237 0076 0026 0026

120 0723 1196 0977 0831 0393 0288 0117 0036 0030 0048

130 0540 1146 1080 0651 0218 0179 0093 0073 0084 0110

140 0510 1156 1569 0548 0111 0154 0177 0153 0154 0239

150 0600 1225 2058 0571 0107 0327 0435 0590 0328 0339

160 0744 1294 3124 0886 0198 0688 1049 0909 0547 0580

Source: Adapted from Gote, M and H Erhardt, J. Phys. B: At. Mol. Opt. Phys, 28, 3957, 1995

200 eV

0 40 80 Scattering angle (°)

Rotational excitation

Differential scattering

120 0

16 12

8 4

1600 40 80 120 0

16 12

8 4

1600 40 80 120 0

1600 40 80 120 0

10 20 30

100 eV

70 eV

50 eV Cl2

Di ffe

re nt

ial cr

os ss

ec tio

n (1

m 2 /

sr )

125Theoretical cross sections up to 1000 eV are given by Kutz and Meyer (1995)

The vibrational excitation energy for Cl2 is 694 meV (Christophorou and Olthoff, 2004) Further experimental data on vibrational cross sections are not available Theoretical or derived values are given by Christophorou and Olthoff (2004)

Total ionization cross sections for Cl2 are shown in Table 126 and Figure 124Partial ionization cross sections have been measured by Calandra et al (2000)

TABLE 12.5 Cross Sections for Rotational Excitation for Cl2 Energy (eV) Qrot (10−20 m2) Energy (eV) Qrot (10−20 m2)

2 1422 50 1557 5 2261 70 1141 10 3125 100 789 20 320 150 641 30 2312 200 634

Source:Adapted from Integrated by Gorur Govinda Raju, unpublished data, 2007

TABLE 12.6 Total Ionization Cross Sections for Cl2

Total Ionization Cross Section (10−20 m2)

Energy (eV) Stevie and Vasile

(1981) Kurepa and Belic´

(1978)

110 0

112 0016

114 0028

116 0050

118 0068

120 00927

122 0122

124 0146

126 0158

128 0192

130 0231

132 0283

134 0317

135 017

136 0371

138 0414

Cross Sections for Cl2

Total Ionization Cross Section (10−20 m2)

Energy (eV) Stevie and Vasile

(1981) Kurepa and Belic´

(1978)

140 034 0463

142 0521

144 0581

146 0631

148 0682

150 068 0747

152 0797

154 0859

156 0913

158 0979

160 085 103

162 109

164 115

166 121

168 126

170 124 132

172 138

174 143

176 148

178 154

180 175 159

182 164

184 170

186 175

188 180

190 220 186

192 191

194 195

196 200

198 207

20 265 212

21 344 238

22 400 256

23 428 279

24 297

25 318

26 490 330

27 351

28 535 366

29 379

30 390

31 580

32 409

34 427

36 625 442

38 453

40 461

42 631 468

44 480

46 487

47 654

continuted

Cl2 + e → Cl + Cl− (121)

and attachment

Cl2 + e → Cl2 (122)

In addition, at energies >10 eV, ion pair production is possibleThe threshold energy for Cl+ ion appearance by this process is 1187 eV (Kurepa and Belic´, 1978)The potential energy diagram of the Cl2 molecule and the lowest of the four states of negative ion Cl2− are shown in Figure 125 (Barsotti et al, 2002)

Appearance potentials of negative ions and positions of peaks from electron attachment to the Cl2 molecule are shown in Table 127

The total attachment cross sections for Cl2 molecule are shown in Table 128 and Figure 126 (Kurepa and Belic´, 1978)

TABLE 12.7 Appearance Potentials and Peak Positions

Process Appearance

Potential (eV) Peak (eV) Reference

Cl2 + e → Cl2−* 00 00 Kurepa and Belic´ (1978)

Cl2 + e → Cl + Cl− 10 25 34 575

82 97

Cl2 + e → Cl + Cl− 003 Tam and Wong (1978) 25

55

654 Internuclear distance (10-10 m)

–2

–1

Po te

nt ia

le ne

rg y(

eV )

Total Ionization Cross SCl2

Total Ionization Cross Section (10−20 m2)

Energy (eV) Stevie and Vasile

(1981) Kurepa and Belic´

(1978)

48 498

50 506

52 513

53 671

54 520

56 526

58 687 532

60 539

62 543

64 687 5468

66 548

68 552

69 710

70 553

72 554

74 556

76 557

78 558

80 117 558

82 558

84 558

86 558

88 5572

90 5568

91 682

92 556

94 555

96 554

98 5535

100 5524

102 682

Note: Also see Table 1212

Kurepa (1978) Stevie (1981) Christophorou (2004)

6040200 0

10 Ionization (Cl2)

Energy (eV)

Cr os

ss ec

tio n

(1 0-

2 )

More recent measurements have confirmed that the cross section at zero energy peak is 25 × 10−20 m2 (see Barsotti et al, 2002) Figure 127 shows the details at low energy The total cross section at zero energy is much higher at 40 × 10−20 m2 (see Gulley et al, 1998) and the discrepancy has not been satisfactorily resolved

Christophorou and Olthoff (2004) summarize the data on attachment rates at various temperatures, reduced electric field E/N, and derived mean energy of the swarmTable 129 shows the rates at various temperatures obtained by several researchers

Figure 128 (Bailey and Healy, 1935) shows the drift velocity and characteristic energy (D/µ) at low values of E/NBoth sets are the only data available

Table 1210 and Figure 129 show the density-reduced ionization coefficients (α/N), density-reduced attachment coefficients (η/N), and density-reduced effective ionization

Total Attachment Cross SCl2 Energy (eV)

Qatt (10−22 m2)

Energy (eV)

Qatt (10−22 m2)

Energy (eV)

Qatt (10−22 m2)

00 2016 68 355 28 135

01 800 70 301 30 108

02 245 72 231 32 089

03 62 74 178 34 074

04 20 76 138 36 065

05 098 78 100 38 062

06 068 80 0699 40 060

07 063 82 051 42 040

08 050 84 045 44 062

09 044 86 041 46 064

10 042 88 0395 48 069

12 048 90 0395 50 076

14 059 92 0380 52 088

16 084 94 0386 54 105

18 132 96 0392 56 128

20 181 98 0390 58 152

22 242 100 0380 60 176

24 277 102 0372 62 196

26 279 104 0365 64 218

28 249 106 0355 66 234

30 192 108 0348 68 252

32 136 110 0344 70 272

34 106 112 0325 72 318

36 095 114 0316 74 373

38 105 116 0318 76 406

40 129 118 0328 78 424

42 169 120 0365 79 428

44 209 122 0440 80 425

46 257 124 0530 82 420

48 308 126 0625 84 413

50 363 128 0720 86 404

52 408 130 0510 88 394

54 446 14 0900 90 382

56 474 16 180 92 370

58 484 18 240 94 357

60 478 20 258 96 340

62 462 22 240 98 322

64 438 24 207 100 307

66 399 26 166

Note: For electron energy ≥14 eV, cross section for ion pair production is also included

100101 Energy (eV)

0.1 0.1

(Cl2)

Cr os

ss ec

tio n

(1 0-

161161 0

5 Attachment

(Cl2)

Energy (eV)

Cr os

ss ec

tio n

(1 0-

2 )

(1967) on pressure, unlike for Br2 (see Razzak and Goodyear (1969)) (Table 1210)

0 7

W (1

06 cm

s1 )

Cl2

14(a)

50 100 150 200 250

0 1.0

D T /μ

/( V)

Cl2

2.5

2.0

1.5

(b)

50 100 E/N (10-17 V cm2)

150 200 250

TABLE 12.9 Attachment Rate Constants

Temperature (K) Rate (10−16 m3/s) Method Reference

213 122 Swarm McCorkle et al (1984)

233 135

253 151

273 167

298 186

323 214

203 <10 FA/LP Smith et al (1984) 300 20

455 33

590 48

350 37 FA/ECR Sides et al (1976)

293 31 Swarm Christodoulides et al (1975)

Note:ECR = electron cyclotron resonance; FA = flowing afterglow; LP = Langmuir probe

(Cl2)

400 E/N (Td)

(a)

(c) Ionization (a) Attachment (b) Effective ioniz. (c)

(b)

200 –20

30Co effi

cie nt

s( 10

2 )

TABLE 12.10 Ionization and Attachment Coefficients for Cl2 E/N (Td) α/N (10−22 m2) η/N (10−22 m2) (α-η)/N (10−22 m2)

213 645

215 253 −185 220 734

225 244

240 982

250 223 −107 260 124

275 200

280 155

300 192 176 213

320 234

325 156

340 282

350 137 180

360 334

375 119

380 390

400 447 100 337

420 504

425 814

440 562

450 591 626 509

500 691

550 868

600 1037

650 1203

700 1369

750 1534

Makochekanwa et al (2003) have measured the total scattering cross sections as shown in Table 1211 and Figure 1210

See Table 1212

Total scattering

10.1 1

Energy (eV)

Cr os

ss ec

tio n

(1 0-

2 )

(Cl2)

TABLE 12.12 Total Ionization Cross Sections for Cl2 Energy (eV)

Qi (10-20 m2)

Energy (eV)

Qi (10-20 m2)

Energy (eV)

Qi (10-20 m2)

Energy (eV)

Qi (10-20 m2)

12 0100 28 634 525 856 180 756

13 0346 30 675 55 867 200 718

14 0778 32 726 575 876 300 573

15 119 34 747 60 886 400 484

16 166 36 758 65 900 500 414

17 213 38 768 70 911 600 359

18 260 40 775 80 920 700 326

19 302 42 789 90 908 800 292

20 357 44 799 100 903 900 267

22 437 46 810 120 873

24 508 48 826 140 812

26 573 50 840 160 789

Source:Adapted from R Basner and K Becker, New J. Phys., 6, 118, 2004 Note:For partial ionization cross sections (Cl2

+ ions), see original paper

Total Scattering Cross SCl2 Energy (eV)

QT (10−20 m2)

Energy (eV)

QT (10−20 m2)

Energy (eV)

QT (10−20 m2)

08 545 65 2584 280 2239

10 496 71 2799 300 2155

12 595 73 3033 350 2019

14 677 77 3212 400 1990

16 738 81 3128 450 1926

18 797 85 3071 500 1820

20 758 90 3071 600 1649

22 1004 95 3060 700 1604

25 1217 100 2929 800 1464

29 1337 110 2966 900 1385

32 1381 120 3020 100 1267

35 1450 140 3046 150 1042

38 1532 160 2834 200 896

41 1637 180 2681 300 659

47 1818 200 2656 400 624

51 1993 220 2410 500 550

56 2222 240 2309 600 457

59 2389 260 2298

Source: Digitized and interpolated from CMakochekanwa et al J. Phys. B: At. Mol. Opt. Phys, 36, 1673, 2003

This page intentionally left blank