ABSTRACT

Thresholds ............................................................ 734

13.3.2. Extreme Value Theory ........................................................ 735

13.3.3. The Radar Problem.............................................................. 736

13.3.4. Methods for Estimating Thresholds .................................... 737

13.3.4.1. Estimates Based on Raw Data............................. 737

13.3.4.2. Estimates Motivated by the Extreme

Value Theory........................................................ 738

13.3.5. The Generalized Pareto Distribution................................... 739

13.3.5.1. Methods for Estimating the Parameters

of the GPD ........................................................... 742

13.3.5.2. Estimation of Thresholds ..................................... 748

13.3.6. Numerical Results................................................................ 749

Distributions ......................................................... 749

13.3.6.2. Empirical Properties of the Estimators for

Known Distributions ............................................ 749

13.3.6.3. Effect of the Choice of l on the Threshold

Estimates .............................................................. 756

13.3.7. Examples.............................................................................. 758

13.3.7.1. Known Distribution Case..................................... 758

13.3.7.2. An Unknown Distribution Case........................... 759

13.4. Performance of the LOD for Multivariate Student-T

and K-Distributed Disturbances........................................................ 764

13.4.1. The Multivariate Student-T Distribution............................. 764

13.4.1.1. The Locally Optimum Detector........................... 766

13.4.1.2. Computer Simulation of Performance................. 768

13.4.1.3. Results of the Computer Simulation ................... 771

13.4.2. The Multivariate K-Distribution.......................................... 776

13.4.2.1. The Locally Optimum Detector........................... 778

13.4.2.2. Computer Simulation of Performance................. 780

13.4.2.3. Conclusions .......................................................... 783

13.4.3. Determining LOD Threshold with Real Data..................... 785

13.5. Performance of the Amplitude Dependent LOD ............................. 788

13.5.1. The Amplitude Dependent LOD for the Multivariate

K-Distributed Disturbance ................................................... 789

13.5.1.1. Results of Computer Simulation.......................... 790

13.5.2. The Amplitude Dependent LOD for the Student-T

Distributed Disturbance ....................................................... 794

13.5.2.1. Conclusions .......................................................... 796

13.6. Conclusions ....................................................................................... 797

13.6.1. Summary.............................................................................. 797

13.6.2. Suggestion for Future Research .......................................... 798

In radar applications it is found that the received target signal is contaminated

with clutter and thermal noise. The received signal due to undesired reflections

from land, sea, atmosphere etc. is called clutter. The thermal noise generated by

the receiver hardware is typically modeled as a Gaussian random process. This

kind of noise is always present. Depending upon the situation, the clutter may or

may not be modeled as a Gaussian random process. Also, the power associated

with the background clutter may be orders of magnitude larger than the receiver

thermal noise or the desired signal power.