ABSTRACT

The airgap field distribution in induction machines is influenced by stator and rotor mmf distributions and by magnetic saturation in the stator and rotor teeth and yokes (back cores).

Previous chapters introduced the mmf harmonics but were restricted to the performance of its fundamental. Slot openings were considered but only in a global way, through an apparent increase of airgap by the Carter coefficient. We first considered magnetic saturation of the main flux path through its influence on the airgap flux density fundamental. Later on a more advanced model was introduced (AIM) to calculate the airgap flux density harmonics due to magnetic saturation of main flux path (especially the third harmonic). However, as shown later in this chapter, slot leakage saturation, rotor static and dynamic eccentricity together with slot openings and mmf step harmonics produce a multitude of airgap flux density space harmonics. Their consequences are parasitic torque, radial uncompensated forces, and harmonics core and winding losses. The harmonic losses will be treated in the next chapter. In what follows we will use gradually complex analytical tools to reveal various airgap flux density harmonics and their parasitic torques and forces. Such a treatment is very intuitive but it is merely qualitative and leads to rules for a good design. Only FEM-2D and 3D-could depict the extraordinary involved nature of airgap flux distribution in IMs under various factors of influence, to a good precision, but at the expense of much larger computing time and in an intuitiveless way. For refined investigation, FEM is, however, “the way”.