ABSTRACT

As we have seen in previous chapters, the design of an induction motor means to determine the IM geometry and all data required for manufacturing so as to satisfy a vector of performance variables together with a set of constraints. As induction machines are now a mature technology, there is a wealth of practical knowledge, validated in industry, on the relationship between performance constraints and the physical aspects of the induction machine itself. Also, mathematical modeling of induction machines by circuit, field, or hybrid models provides formulas of performance and constraint variables as functions of design variables. The path from given design variables to performance and constraints, is called analysis, while the reverse path is called synthesis. Optimization design refers to ways of doing efficiently synthesis by repeated analysis such that some single (or multiple) objective (performance) function is maximized (minimized) while all constraints (or part of them) are fulfilled (Figure 18.1).