In this chapter, we introduce the paranormed Nörlund sequence spaces Nt(p) and determine its alpha-, beta- and gamma-duals. We characterize the classes of matrix transformations from the space Nt(p) into any given sequence space μ and from a given sequence space μ into the space Nt(p). Finally, we give the necessary and sufficient condition in order the space Nt(p) to be rotund and present some results related to this concept.