ABSTRACT

The term nontraditional machining refers to a variety of thermal, chemical, electrical, and mechanical material-removal processes. The impetus for the development of nontraditional machining methods has come from the revolution in materials, the demand for new standards of product performance and durability, the complex shapes of products engineered for specifi c purposes, and considerations of tool wear and economic return. Nontraditional machining methods have also been developed to satisfy the trend toward increased precision and to create improved surface conditions. Because nontraditional machining processes can provide new ways of satisfying the demands of nascent technological advances in many areas, design engineers need not limit ideas to traditional machining methods. A new horizon of choices has opened up for the design of products.