ABSTRACT

Since the advent of transplantation science, cryopreservation has been recognized as a highly desirable method for facilitating the availability of the highest quality material. This goal has been achieved in some cellular systems, but extrapolation to organized tissues and organs is fraught with additional problems that are only recently being addressed. Application of the principles of cryobiology to the growing needs of the emerging tissue-engineering field has produced a need for greater understanding of the fundamentals of low-temperature preservation as they apply to threedimensional multicellular tissues. Extrapolation of recent advances in the vitrification (glass formation) of tissues to scaled-up specimens of clinical relevance cannot be achieved easily by empirical approaches, partly due to the frequent formation of fractures at various levels. An understanding of this potentially destructive outcome of thermo-mechanical stresses, which is inherent in the cryopreservation of complex biological systems, is crucial for the development of improved methods of cryogenic storage. Similar devastating effects are evident from cryopreservation applications in the food industry, agriculture, and from the clinical application of cryosurgery.