ABSTRACT

O Note: Inhibited with 10 to 20 ppm hydroquinone monomethyl ether to prevent polymerization (Acros Organics, 2002). CASRN: 140-88-5; DOT: 1917; DOT label: Flammable liquid molecular formula: C5H8O2; FW: 100.12; RTECS: AT0700000; Merck Index: 12, 3805 Physical state, color, and odor: Clear, colorless liquid with a penetrating and pungent odor. Leonardos et al. (1969) and Nagata and Takeuchi (1990) reported odor threshold concentrations of 0.47 and 0.26 ppbv, respectively. Experimentally determined detection and recognition odor threshold concentrations were 1.0 µg/m3 (0.24 ppbv) and 1.5 µg/m3 (0.37 ppbv), respectively (Hellman and Small, 1974). Melting point (°C): -71.2 (Weast, 1986) Boiling point (°C): 99.8 (Weast, 1986) Density (g/cm3 at 20 °C): 0.9234 (Weast, 1986) 0.9405 (Windholz et al., 1983) Diffusivity in water (x 10-5 cm2/sec): 0.84 at 20 °C using method of Hayduk and Laudie (1974) Flash point (°C): 10 (open cup, NFPA, 1984) Lower explosive limit (%): 1.4 (NIOSH, 1997) Upper explosive limit (%): 14 (NFPA, 1984) Henry’s law constant (x 10-3 atm⋅m3/mol): 2.25 at 20 °C (approximate - calculated from water solubility and vapor pressure) Ionization potential (eV): 10.30 (NIOSH, 1997) Soil organic carbon/water partition coefficient, log Koc: Unavailable because experimental methods for estimation of this parameter for aliphatic amines are lacking in the documented literature

ow 1.33 at room temperature (shake flask-GLC, Tanii et al., 1984) Solubility in organics: Soluble in alcohol, chloroform, and ether (Weast, 1986) Solubility in water: 20 g/L at 20 °C (quoted, Windholz et al., 1983) 15 g/kg at 25 °C (BASF, 2002) 237 mM at 60 °C (multiple headspace extraction-GC, Chai et al., 2005) Vapor density: 4.09 g/L at 25 °C, 3.45 (air = 1) Vapor pressure (mmHg): 29 at 20 °C (NIOSH, 1997) 46.7 at 30.0 °C, 74.6 at 40.0 °C (Jolimaître et al., 1998) Environmental fate: Chemical/Physical. Polymerizes on standing and is catalyzed by heat, light, and peroxides (Windholz et al., 1983). Slowly hydrolyzes in water forming ethanol and acrylic acid. The reported rate constant for the reaction of ethyl acrylate with ozone in the gas phase was determined to be 5.70 x 10-18 cm3 mol/sec (Munshi et al., 1989). At an influent concentration of 1,015 mg/L, treatment with GAC resulted in an effluent concentration of 226 mg/L. The adsorbability of the carbon used was 157 mg/g carbon (Guisti et al., 1974). Exposure limits: Potential occupational carcinogen. NIOSH REL: IDLH 300 ppm; OSHA PEL: TWA 25 ppm (100 mg/m3); ACGIH TLV: TWA 5 ppm, STEL 15 ppm (adopted). Symptoms of exposure: Strong irritant to eyes, skin, and mucous membranes (Patnaik, 1992) Toxicity: Acute oral LD50 for rats is 800 mg/kg, rabbits 400 mg/kg, mice 1,799 mg/kg (quoted, RTECS, 1985). Uses: Manufacture of water emulsion paints, textile and paper coatings, adhesives, and leather finish resins.