ABSTRACT

Successfully interfacing the CNS with external electronics holds great potential in  improving the quality of life for patients with sensory and motor dysfunctions. The  impact is already evident in the profound clinical applications of cochlear implants  and deep brain stimulations [1,2]. More recently, the use of an invasive electronic  brain implant, also known as a neuromotor prosthesis, to help a patient paralyzed  by a tetraplegic spinal cord injury has been reported [3]. In the study, a 96-electrode  array was implanted into the patient’s motor cortex to establish a brain-computer  interface, where the patient could move a cursor to issue different instructions by  thoughts of such motions. Clearly, it adds credibility to the enormous benefits that  the interface technology could bring as a potential new therapy to restore independence for those severely disabled patients. Additionally,  this interface technology  may have significant implications for fundamental studies in neuroscience to understand normal physiology, pathology, or treatment of disorders such as epilepsy.