ABSTRACT

Proof of Theorem 2.3 Assume |z| > 1. Choose R , 1 < R < ρ. We have by (2.4)

sr·2(n+1)−1 = 1

2πi

f(t) t− z

( 1−

( z

t

)r·2(n+1)) dt (4.1)

and

hr.·2(n+1)−1;α;β(f ; z) = 12πi ∮ |t|=R

( 1− (ω2(n+1);α;β(z))

) dt

) dt

) dt

(4.2)

We have for |z| > 1 and |t| > 1

= 1− ( zt )r·2(n+1) ( 1− re2πiα/3

)) ×

× ( 1− re2πiβ/3

)) ×

× ( 1 + re

)) ×

× ( 1 + re

))

= (

+O (

) +O

) +O

)) (4.3)

Combining (4.1), (4.2) and (4.3) we get

sr·2(n+1)−1 −hr.·2(n+1)−1;α;β(f ; z) = 12πi ∮ |t|=R

+

) +O

) +O

))

Considering for 1 < R < ρ the cases 1 < |z| < R and |z| > R we find

lim supn→∞ |sr·2(n+1)−1(f ; z)− hr.·2(n+1)−1;α;β(f ; z)| 1

= ( |z|

)2r ·max ( 1|z| , 1R) =

when 1 < |z| < R and 1 < R < ρ |z|2r

R2r+1 when |z| > R and 1 < R < ρ.