ABSTRACT

Use of shunt capacitors in the power system for power factor correction results in significant economic savings. Some of the additional effects of the application of shunt capacitors, such as harmonics, voltage magnification, overvoltage problems, ferroresonance, and related issues, are identified in other chapters. One effect of capacitor switching on a power transformer is to produce high frequency oscillations and in some cases, equipment failure. In order to understand this problem in a system, detailed knowledge of the switching pattern and time/frequency results is needed. In certain applications, the transformer and the shunt capacitors are switched together. The arc furnace is one such load where the furnace transformer and the shunt capacitors are energized or de-energized together. Such a configuration is found to produce harmonic resonance [1]. In EHV and HV systems, the shunt capacitors are installed at the substation and the lines are terminated through stepdown transformers. The switching of these capacitors causes traveling waves and phase-to-phase

overvoltages at the transformer termination [2,3]. The transients due to capacitor energizations with a transformer are discussed in this chapter.