ABSTRACT

In nature, organisms produce a vast array of complex chemical entities via numerous precisely orchestrated enzyme-mediated reactions. This remarkable ability of nature to perform sophisticated chemical syntheses with unerring selectivity has long been an inspiration to medicinal and process chemists. Enzymes offer exquisitely precise chemo-, regio-

,

and stereocontrol and can accelerate chemical transformations that are challenging to perform by conventional chemical synthetic methodology. Reactions often proceed at room temperature and under neutral aqueous conditions, in the absence of toxic organic solvents or heavy metal catalysts. In addition, by virtue of enzyme selectivity, biocatalytic routes can obviate synthetic protecting group manipulations. Consequently, the application of biocatalysis for the synthesis of chiral as well as achiral pharmaceutical intermediates has received increased attention. As the number of available enzymes continues to grow, so do the types of chemical transformations that biocatalysts are able to perform reliably

in vitro.